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Shear thickening in dense suspensions driven by
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The processing of dense suspensions is a crucial step in many industries including mining;
the production of ceramics; and the manufacture of pharmaceuticals. It is widely reported
that these suspensions exhibit nonlinear behaviours such as shear thinning and thickening,
with particle surface contacts recently being accepted as a primary culprit in the latter.
In light of this, the modelling community have started to explore the role of particle
surface tribology, predominantly by incorporating Coulombic friction models borrowed
from the field of dry granular matter. Full details of the interactions between particle
surfaces remain unclear, however, and it is suggested that physical interlocking of particle
asperities may be key. Here, we use particle-based simulations to explore explicitly the
effect of interlocking on the rheology of dense suspensions of micron-sized solids in a
Newtonian fluid. Our simplified model recovers shear thinning, thickening and jamming
phenomena commonly seen in experiments.
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1. Introduction

Dense suspensions of solid particles in a Newtonian fluid are found throughout nature, in
everything from geophysical phenomena such as landslides and magma flow to processes
like the transport of sediment in rivers (Denn, Morris & Bonn 2018; Guazzelli & Pouliquen
2018; Hsiao & Pradeep 2019; More & Ardekani 2020c; Ness, Seto & Mari 2022).
Meanwhile, they are present in many industries such as the manufacture of pastes and
ceramics; the production of vaccines and drug formulations; and the preparation of metal
pastes for modern fuel cells (Denn et al. 2018; Guazzelli & Pouliquen 2018; More &
Ardekani 2020c). Nevertheless, there is no unified model to describe their behaviour
under flow, which typically departs substantially from classical laws and instead shows
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capricious rate dependence (Barnes 1989; Bender & Wagner 1996; Brown & Jaeger 2012;
Seto et al. 2013; Mari et al. 2014; Ness & Sun 2015). Hence, the study of dense suspensions
remains a diverse sphere of research where experimental and computational studies must
be used in parallel to unveil the microscopic mechanisms underlying their bulk rheology
and fluid mechanics (Denn et al. 2018; Duran 2012; More & Ardekani 2020a,c).

We focus here on suspensions of non-Brownian, non-attractive particles, which often
shear thicken at large stresses. The new consensus (Denn et al. 2018; Ness et al. 2022)
is that frictional contacts are responsible for this behaviour, although the mechanism
by which these contacts occur is still debated (Jamali & Brady 2019). Experimental
measurements of particle–particle-contact physics (Comtet et al. 2017; Hsu et al. 2018)
reveal that static friction is present, although measured sliding coefficients are incongruous
with the bulk rheology suggesting that other physics (rolling, twisting, adhesion, contact
deformation leading to shear thinning) may also be at play (Lobry et al. 2019; Arshad et al.
2021).

Although numerical models which employ fictitious friction coefficients have led to
substantial progress in establishing the constitutive behaviour of these suspensions (Mari
et al. 2014; Ness, Xing & Eiser 2017b; Gillissen & Ness 2020; Gillissen et al. 2020)
and have shed light on experimental findings (Lin et al. 2015; Guy et al. 2020; Singh
et al. 2020), they necessarily miss more detailed aspects of the surface physics involved
– especially the effect of physical interlocking between asperities. Other numerical works
have made substantial progress in exposing the role of roughness height (More & Ardekani
2020a,b), but lack explicit asperity interlocking.

In particular, this picture and these models raise fundamental questions about the
tribology of particle contacts: (i) What constitutes a contact between suspended particles?
(ii) How do lubrication layers break down and are stresses sustained by fluid or solid? (iii)
How do we get from surface chemistry to mechanical friction? (iv) How can we apply
a ‘coarse-grained’ macroscopic friction coefficient to contacts that may comprise just a
few interlocking asperities? Such questions present a new challenge to the field, and their
answers will eventually inform the next generation of formulation and synthesis techniques
for suspensions with engineered rheology.

Here, we present the first step in adapting our computational approach to this new
paradigm. To do so, we omit the Coulombic friction coefficient typically used in dense
suspension models (Seto et al. 2013; Mari et al. 2014) in favour of a more detailed particle
surface representation comprising rigid (but frictionless) asperities and a short-range
repulsive force. We then subject particle assemblies to simple shear flow and measure
their bulk rheology, viz. the reduced suspension viscosity ηr as a function of the solids
fraction φ and shear rate γ̇ .

2. Simulation methodology

Our model is designed to invoke non-Newtonian suspension rheology (especially shear
thickening) without the need for critical load models (Seto et al. 2013) nor imposed
friction coefficients. Instead, we simulate gear-like aggregate particles, which are almost
a two-dimensional (2-D) analogue to those developed experimentally by Hsu et al.
(2018); figure 1.

We follow an established dense suspension simulation technique (Ness 2021) consisting
of a discrete element method (Cundall & Strack 1979) complemented by short-range
hydrodynamics (Ball & Melrose 1997). The basic approach is to: (i) initialise a system of
non-overlapping particles at a desired solids fraction φ; and (ii) evaluate the trajectory of
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Shear thickening driven by particle interlocking
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(a) (b) (c)

Figure 1. Schematic of aggregate particles (coloured by particle). Shown are suspensions with asperity sizes
kr = (a) 0.05; (b) 0.10; (c) 0.20. Green arrows indicate the imposed velocity profile ux( y) = γ̇ y. Blue dashed
circle represents contact with P = 0 (see (3.1)).

each particle over a series of timesteps by numerically solving Newton’s second law under
a prescribed background fluid velocity gradient ∇u∞ and a set of pairwise interactions.
When needed, the bulk stress tensor Σ is calculated from the interaction forces and
particle positions, thus generating rheology data comprising the stress Σ as a function
of deformation rate E (with E ≡ 1

2(∇u∞ + ∇u∞T)) and φ.
We consider a dense (φ close to the jamming fraction φm), non-Brownian (kbT omitted)

suspension of aggregate particles (described below) under a uniform flow with an imposed
deformation rate. The particle properties that set the length, mass and time scales are the
characteristic radius a (length), the density � (mass/length3) (taken to be equal to the
fluid density) and the normal stiffness kn (mass/time2) (with tangential counterpart kt).
We also define a fluid viscosity ηf (mass/(length × time)) and a particle–particle friction
coefficient μ (dimensionless) (set to 0 for all aggregate suspensions but used to simulate
smooth frictional particles for comparison). The background flow is characterised by a
velocity field u∞ (length/time) and its gradient (a tensor, taken to be spatially uniform)
∇u∞ (1/time), the time t for which it is applied, and a stress tensor Σ (mass/(time2 ×
length)). Below we address a scalar velocity gradient as γ̇ (≡∂ux/∂y) and a scalar stress
as Σxy (the xy component of Σ). The non-dimensional parameters necessary to fully define
a simple suspension under given flow conditions are then: γ̇

√
�a3/kn, �γ̇ a2/ηf , μ, φ, ηr ≡

Σxy/ηf γ̇ and γ̇ t. Setting the first two quantities � 1 ensures hard particles and inertia-free
conditions. The model then produces rate-independent rheology, that is ηr = ηr(φ) at large
γ̇ t (Boyer, Guazzelli & Pouliquen 2011).

Particles experience four types of force and torque: drag, pairwise lubrication, pairwise
repulsion and pairwise contact. The full form of these is reported by several authors
(Trulsson, Andreotti & Claudin 2012; Mari et al. 2014; Cheal & Ness 2018; Ge & Brandt
2020) and we give a simplified description here.

The Stokes drag on particle i (radius ai) is proportional to the difference between its
velocity ui and the fluid streaming velocity at its centre u∞(xi)

F d
i = −6πηf ai(ui − u∞(xi)). (2.1)

This force induces flow in the simulation, causing particles to conform to the streaming
velocity set by u∞. Similarly, a torque acts to cause the particles to rotate with angular
velocity set by 1

2 (∇ × u∞). Neighbouring particles i and j with centre-to-centre vector
ri,j (with corresponding unit vector ni,j) experience lubrication forces (see Kim & Karrila
1991; Jeffrey 1992) dependent on the gap h between them and their relative velocity. The
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leading term of the force (written below for equal-sized spheres) scales with 1/h and the
normal part of the velocity difference

F l
i,j = 3

2
πa2

i ηf
1
h
(uj − ui)n. (2.2)

This force opposes relative motion between particle pairs. We also include the log(1/h)

terms and the tangential components as described in Cheal & Ness (2018). A lower limit on
h (typically O(10−3ai)) prevents divergence at contact. A torque also acts to resist relative
rotation between i and j (see Cheal & Ness 2018). Neighbouring particles also experience
a repulsive force given by the simple form

F r
i,j = Frep exp

(
(ai + aj) − |ri,j|

ρ

)
ni,j, (2.3)

with Frep the force at contact and ρ setting the rate of decay of the force. An overlapping
particle pair i and j experience a pseudo-hard-sphere contact force dependent upon the
scalar overlap δ and the tangential displacement accumulated over the duration of the
contact ξ

F c
i,j = knδni,j − ktξ . (2.4)

The friction coefficient μ sets an upper bound on ξ through |ξ | � μknδ/kt (when μ = 0
there is no tangential contact force).

The stress contribution from drag forces is proportional to E. The α, β component of
the stress due to lubrication, repulsion and contact is found, respectively, by summing
(Fl,α

i,j rβ
i,j + Fl,β

i,j rα
i,j)/2, Fr,α

i,j rβ
i,j and Fc,α

i,j rβ
i,j over all interacting pairs. The forces are summed

on each particle and the trajectories are then updated using a numerical scheme with
timestep chosen to be small compared with

√
�a3/kn and �a2/ηf .

Here we address gear-like aggregate particles comprising central hosts with affixed
surface asperities, figure 1. Simplifying the contact of two rough surfaces to an interaction
between a number of spherically tipped asperities is a longstanding approach in tribology
that follows Greenwood & Williamson (1966). For tractability in a particle-based code
aimed at obtaining rheological predictions, we interpret this approach in its simplest
form, by fixing spherical asperities to particle surfaces (hemispherical asperities would
yield analogous but quantitatively different results since a lower degree of interlocking
would occur). This approach offers an explicit description of particle interlocking enabling
study of microphysics at a more resolved level compared with those models that apply
Coulombic friction.

We consider a 1 : 1 (by number) mixture of host particles with radii ah and 1.4ah
(following conventional practice (Cheal & Ness 2018)). Aggregates are constructed by
fixing small asperity particles (radii krah and 1.4krah) to host surfaces at equal intervals,
and we explore roughnesses kr = (0.05, 0.10, 0.20). The quantity nkr is set to unity, thus
specifying the number n of asperities on each host. The drag, lubrication and contact
forces (with μ = 0) described above are summed over all particle constituents (host plus
asperities) of each aggregate at each timestep before the resultant total force is applied
uniformly across all particle constituents taking into account the differing masses of host
and asperity. Repulsive forces (F r) act on hosts only. Thus, the aggregates behave as rigid
bodies (no relative translation or rotation between host and asperities). For comparison, we
also simulate smooth particles under the same shearing conditions. These are essentially
aggregates with kr = 0 and with a variable surface friction coefficient μ set either to
0 (frictionless) or 100 (frictional). For simplicity we use a 2-D domain, simulating a
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monolayer of spherical or spherical-aggregate particles. We consider systems of O(102)
aggregate particles, having verified that larger systems produce statistically equivalent
results.

We apply simple shear flow with rate γ̇ (green lines, figure 1) by tilting the periodic
simulation box (at fixed volume) and mapping particle motion across the upper and lower
x planes using Lees–Edwards conditions. Each simulation is run to γ̇ t = 4 and bulk
properties are time averaged across the steady state (typically observed for γ̇ t � 1), and
across 10 independent realisations. The repulsive force magnitude Frep can be used to
define a dimensionless shear rate γ̇ ∗ = 6πηf a2γ̇ /Frep, quantifying rate dependence in our
model. The model is implemented in LAMMPS (Plimpton 1995).

3. Simulation results

The interpretation of the bulk rheology resulting from our model is qualitatively consistent
with much of the recent literature (Ness et al. 2022). We give a brief account of the φ, γ̇ ∗
and ρ dependence of ηr before focussing on the microstructural behaviour.

3.1. The effect of solid loading
To study the role of solid loading we consider φ = 0.55–0.86 at intervals of �φ = 0.01
(where φ takes into account the total aggregate areas (i.e. the combined areas of hosts plus
asperities)), ensuring that φm is captured in all cases (Kausch, Fesko & Tschoegl 1971).
Here, φm represents the value of φ at the inflexion in ηr(φ) (see below and figure 2). We
focus on the particle-contact regime by setting the magnitude of the repulsive force Frep

negligibly small (equivalent to γ̇ ∗ → ∞, and thus recovering rate independence). In all
cases ηr increases according to a power law as φ → φm, with aggregate particles having
smaller φm than smooth ones, figure 2. For frictionless smooth particles φm ≈ 0.84, which
is in quantitative agreement with Reichhardt & Reichhardt (2014) and O’Hern et al. (2003).
Frictional smooth particles and each of the aggregate suspensions exhibit φm well below
this value.

Generally, jamming occurs at lower φ as the size of the tangential forces between
particles increases in smooth suspensions (i.e. increasing μ); while for aggregates φm
decreases systematically as surface roughness kr is increased. Our chosen values of kr
demonstrate a transition from the kr → 0 limit (smooth particles with large μ) to saturation
(there is not much variation between kr = 0.10 and kr = 0.20). The behaviour may deviate
at larger kr as aggregates resemble more fractal, floc-like structures that are beyond the
scope of this work.

This agrees broadly with the experimental work of Hsu et al. (2018) as well as
several works recounted by Hsiao & Pradeep (2019). Similar to Cheal & Ness (2018) the
divergence is in the contact contribution to the stress, although interestingly the value of
φ above which contacts dominate is roughly independent of kr for aggregates despite their
differing φm. Due to the finite stiffness of our simulated particles we observe an overturn
in the viscosity at φ � φm, ordinarily only observed experimentally for soft particles (e.g.
Nordstrom et al. 2010). Focussing on the behaviour below φm, a reasonable approximation
of the rheology is obtained via the phenomenological expression ηr = ν(1 − φ/φm)−λ,
with values of φm given in the figure 2 caption, and full fitting parameters given in table 1.
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Figure 2. Divergence of the relative viscosity ηr with area fraction φ at γ̇ ∗ = ∞ for each of the suspension
types explored. Shown in dashed lines are fits to ηr = ν(1 − φ/φm)−λ. The maximum solid fractions
for smooth particles μ = (0, 100) and aggregates with kr = (0.05, 0.10, 0.20) are, respectively, φm =
(0.84, 0.77, 0.74, 0.71, 0.69) (see table 1).

ν λ φm

Smooth (μ = 0) 0.70 1.30 0.84
Smooth (μ = 100) 0.40 1.90 0.77
Aggregate (kr = 0.05) 0.15 2.15 0.74
Aggregate (kr = 0.10) 0.15 2.20 0.71
Aggregate (kr = 0.20) 0.15 2.15 0.69

Table 1. Fitting parameters for the relative suspension viscosity as a function of the solid fraction, with
functional form ηr = ν(1 − φ/φm)−λ.

3.2. Shear rate dependence
We explored shear rates γ̇ ∗ = O(10−4–103) at modest repulsive force decay rates ρ =
3krah (ρ = 0.1(ai + aj) for smooth particles), and a range of φ < φm, figure 3. In all cases
the model predicts a sequence of shear thinning at γ̇ ∗ � 1, thickening at 1 � γ̇ ∗ � 102

and a quasi-Newtonian plateau at γ̇ ∗ � 102. The sharp transition from shear thinning to
dramatic shear thickening observed by Egres & Wagner (2005), Boersma, Laven & Stein
(1990) and Hsu et al. (2018) is recovered close to φm in each case. Shear thickening in our
aggregate model occurs as the short-ranged repulsive force gives way to asperity–asperity
interactions with increasing γ̇ ∗. For smooth spheres we observe very modest shear
thickening when μ = 0 as the transition is from repulsive interactions to frictionless
contacts as the stress is increased. For μ = 100 we observe strong shear thickening, similar
to the aggregate cases.

When plotting ηr(γ̇
∗) (figure 3), we see that aggregates exhibit ηr significantly higher

than those of frictionless and frictional smooth particles when comparing equal φ.
Meanwhile, as the aggregate kr is increased ηr generally increases, although comparing
kr = 0.10 with kr = 0.20 the effect is rather subtle suggesting, interestingly, that these two
asperity sizes produce comparable φm, consistent with figure 2. For example, at φ = 0.68,
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Figure 3. Rheology of smooth and aggregate particles, showing the relative viscosity ηr as a function of shear
rate γ̇ ∗ (a,c,e,g,i) and stress ηrγ̇

∗ (b,d, f,h,j) for several φ (see legends). Shown are: (a,b) smooth frictionless
(μ = 0) particles; (c,d) smooth frictional (μ = 100) particles; (e, f ) aggregates with kr = 0.05; (g,h) aggregates
with kr = 0.10; (i,j) aggregates with kr = 0.20. For (a–d) ρ = 0.1(ai + aj); for (e–j) ρ = 3krah. Insets show
sketches of smooth and aggregate particles represented in each panel.

we see ηr increase from O(101) to O(102) for aggregates as their surface roughness is
increased from 0.05 to 0.20, compared with ηr ≈ 20 for smooth particles with μ = 100.
This is consistent with Pan et al. (2015) and Hsu et al. (2018), and a comparison with
Tanner & Dai (2016) reveals that, at comparable proximity to jamming (comparing data
at φ/φm ≈ 0.85), moving from smooth particles to aggregates with kr = 0.05 leads to
viscosity increases of 1.4 (experiment) and 2 (simulation). The particles used by Tanner
& Dai (2016) were produced via grinding and have highly irregularly shaped asperities so
a precise quantitative match is untenable. Notwithstanding the difficulty in comparing
2-D simulation with 3-D experiment, our aggregate model successfully captures the
broad effects of varying surface roughness on suspension viscosity. A more quantitative
comparison of simulation and experiment would require extensive 3-D computation
involving aggregate particles with geometry closer to those of the experiment.

Looking at the stress dependence (figure 3), we see that for all suspensions thickening
starts at a critical dimensionless stress (ηrγ̇

∗)† ≈ 1 and reaches a plateau at a second
(ηrγ̇

∗)‡ ≈ 102. These results being independent of φ and the particle roughness (both μ

and kr) is consistent with theory (Wyart & Cates 2014), experiment (Bender & Wagner
1996; Lootens et al. 2005; Brown & Jaeger 2012; Guy, Hermes & Poon 2015) and other
simulations (Mari et al. 2014; More & Ardekani 2020b,c). The generality of this result
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could, therefore, be used to determine the critical shear rates required for the onset and
plateau of shear thickening in a given system.

3.3. Range of repulsive force
Generically, the presence of a repulsive force leads to shear thinning (Ness et al. 2022).
When a suspension is at very low (ηrγ̇

∗), the relatively large value of Frep ensures particles
will not come into contact with each other. Each particle is thus surrounded by a repulsive
force field into which other particles cannot penetrate. This leads to them appearing
artificially larger, with their radius becoming aeff = ah + Δ. As such we may define a
φeff (larger than φ) applicable to the shear thinning regime. Given a viscosity relation
such as ηr ∼ (1 − φ/φm)−λ, increases to φ will naturally lead to increased ηr.

The rate of decay ρ associated with the repulsive force Frep plays a key role,
most importantly affecting the rate of shear thinning. For frictionless smooth particles,
increasing ρ systematically lowers ηr in the shear thinning region ((ηrγ̇

∗) < (ηrγ̇
∗)†) as

particles are kept at further distance from one another, forcing a more isotropic structure.
Increasing the stress shifts the system from being controlled by repulsive forces to being
controlled by frictionless contact forces.

The behaviour for frictional smooth particles is rather more subtle. For ρ � 0.1(ai + aj)
there remains a systematic (but very weak) decrease in ηr with increasing ρ during shear
thinning, with all cases eventually reaching the same plateau. For ρ = 0.01(ai + aj),
however, the behaviour is qualitatively different: here, we see shear thinning at much lower
(ηrγ̇

∗), before a low ηr plateau at (ηrγ̇
∗) ≈ 1 that gives way to thickening at (ηrγ̇

∗) > 1.
In this case the particles behave almost as frictionless hard spheres until the stress reaches
high enough values to induce frictional contact. This is because the added effective volume
argument made above is less relevant (since in principle (φeff − φ) ∼ ρ3) but nonetheless
Frep is sufficient to prevent direct particle contact at low stress. Note that figures 4(a) and
4(b) are measured for comparable φ/φm (which means they are at different φ). The shear
thickening behaviour in figure 4(b) is of the same type as that observed in the ‘electrostatic
repulsion model’ of Mari et al. (2014) i.e. a short-ranged repulsive force gives way to
contacts with Coulombic friction.

For aggregate suspensions the effect of ρ is largely independent of the asperity size.
Interestingly, for small ρ (crucially this means ρ � krah) there is a regime in which the
aggregate suspensions are no longer shear thinning. Here, the repulsive force decays so
rapidly that it becomes too weak to prevent asperity interlocking: the suspension thus
enters a ‘permanently thickened’ state in which asperities are always protruding. For larger
ρ, the repulsive force extends beyond the perimeter of the asperities so that changing
γ̇ ∗ affects the potential for interlocking and therefore controls the rheological response.
Specifically, aggregate suspensions show shear thinning followed by shear thickening as
the stress is increased (qualitatively similar to frictional smooth particles).

Overall, where a shear thinning region does exist (that is, at low stresses where the
coordination number Z = 0) ηr will be independent of the surface particle roughness (i.e.
μ or kr) at a given φ and ρ. Meanwhile, the plateau in ηr above (ηrγ̇

∗)‡ is independent of
ρ but sensitive to μ, kr and φ.

3.4. Micromechanical mechanisms
We now consider the microstructural behaviour, focussing on the average number of
contacts or interlocking particle pairs present at various φ and γ̇ ∗. We use the average
mechanical coordination number Z (following Sun & Sundaresan 2011) calculated as
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Figure 4. Rheology of smooth and aggregate particles, showing the relative viscosity ηr as a function of
repulsive force decay rate ρ (see legend). In each case the solid fraction φ is chosen close to frictional jamming,
so that φ/φm ≈ 0.93. Shown are: (a) smooth frictionless (μ = 0) particles; (b) smooth frictional (μ = 100)
particles; (c) aggregates with kr = 0.05; (d) aggregates with kr = 0.10; (e) aggregates with kr = 0.20. Insets
show sketches of smooth and aggregate particles represented in each panel.

Z = 2Nc/N, where Nc is the number of particle–particle contacts and N is the number
of ‘whole’ particles (i.e. smooth particles or aggregates). To calculate Nc under a given
set of conditions, we first evaluated the number of particles separated by a distance
less than a minimum distance required for contact. Importantly, smooth and aggregate
particles will have different criteria for this. For smooth particles, contacts are identified
based on intersecting surfaces (i.e. the scalar separation of the particle centres is less
than the sum of their radii). For aggregates, contact detection is more involved as it
becomes necessary to identify the point at which sufficient asperity interdigitation occurs
to induce particle–particle interlocking (ultimately leading to shear thickening). To do this,
we investigated a range of asperity interdigitation thresholds and determined which was
most appropriate. We define a contact between aggregates i and j as occurring when the
scalar separation between host particle centres r is

r � (ai
h + a j

h) + (2 − P)(ki
rai

h + k j
ra j

h), (3.1)

with P the fractional interdigitation of the asperities for a pair of contacting particles (see
figure 5a). For P = 0 a contact occurs when one aggregate enters the outer perimeter set
by the asperities of another (blue dashed circle in figure 1); for P = 1 a contact occurs
when the asperity of one aggregate intersects with the host of another. We thus define a set
of new mechanical coordination numbers (subscripts indicate P values): Z0, Z0.125, Z0.25,
Z0.5, Z0.75. We seek a suitable definition of Z sufficiently stringent that the coordination is
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Figure 5. Mechanical coordination number Z for smooth and aggregate particle suspensions. (a) Sketches of
the relative particle positions for various values of the interdigitation fraction P; (b) The coordination number
measured by different criteria of interlocking, for particles with kr = 0.20, φ = 0.62 and ρ = 3krah; (c) The
coordination number (Z, Z0.5) measured at different φ for smooth and aggregate particles (isostatic points
depicted by arrows).

low (≈0) at low stress and approaching the isostatic value (≈2–3) at high stress (when φ is
close to φm). Presented in figure 5(b) are Z data for aggregates with kr = 0.20, ρ = 3krah
and φ = 0.62.

For contacts defined with weak interdigitation (Z0, Z0.125, Z0.25) the coordination
numbers obtained at low stress are too high. That is, Z measured by these metrics indicate
substantial particle interlocking, inconsistent with the bulk shear thinning behaviour
observed. The large value of Z means that particles do come into close contact at all
stresses, but for small (ηrγ̇

∗) the repulsive force is sufficiently high to prevent substantive
interlocking.

In contrast, strong interdigitation (Z0.5, Z0.75) only occurs at shear stresses above
(ηrγ̇

∗)‡, appearing to align with the onset of shear thickening. While an overlap of
75 % only results in small increases in coordination number following shear thickening
(settling at values of 0.5, figure 5b), there is a convincing increase in Z0.5. This suggests
that interlocking extending to around 50 % of the asperity size is a good microstructural
indicator of the move to shear thickening (indeed the Z0.5 behaviour mirrors that of
the number of mechanical contacts per aggregate, while the effective area fraction of
particles with radii ah + 0.5krah differs from that of our aggregate particles only by a
factor of 0.25k2

r ). Using the above definition, we proceed to address the contact number as
a function of φ and γ̇ ∗.

We find that increasing φ results in greater (Z0, Z0.5), figure 5(c), as expected from
the bulk rheology (figure 2). Meanwhile, at a given φ, (Z0, Z0.5) increases in line with the
particle surface roughness, or asperity size. This latter point is easily explained by realising
that particles of equivalent host size but different asperity size will exhibit different degrees
of reach. In other words, particles with larger surface asperities will be more likely to come
into contact since (for a given φ) they sweep a larger overall perimeter than particles with
smaller asperities. It follows from this that the size of the asperities on a particle will have
a direct effect on φm. To investigate this, we sought to establish the critical coordination
number ZC for each suspension i.e. the mechanical coordination number at the jamming
solids fraction φm (Meyer et al. 2010; Connelly et al. 2020).

The theoretical critical coordination number for a 2-D system with particle surface
roughness between zero and infinity is a well-known result. For frictionless (μ = 0)
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discs ZC = 4, whilst discs with large sliding friction coefficient μ 	 0 have ZC = 3.
The constraints necessary to reduce ZC may be generated by either: (i) tangential forces
resulting from an imposed friction coefficient, μ, or; (ii) the presence of particle asperities
which lead to particle–particle interlocking. It is thus expected that the aggregates would
exhibit ZC ≈� 3 since, when interlocking, their asperities should fully constrain the
sliding motion of two contacting particles (analogous to large μ) and may constrain
further degrees of freedom such as rolling too. We report in figure 5(c) the values of
Z corresponding to the values of φm reported above, showing that indeed Z for smooth
particles matches our prediction. Interestingly we found Z0.5 < 3 for all of the aggregate
particles, with Z0.5 increasing as kr increases. Surprisingly, this suggests that aggregates
with large asperities behave most like frictional (large μ) smooth particles, whereas
those with small asperities have ZC < 3 and thus likely have additional constraints to
motion other than sliding. If this trend continues down to smaller asperity sizes it would
suggest that sliding friction alone is not a good approximation for the interaction between
spheroidal particles with small asperities.

We also considered the average number of mechanical contacts associated with each
suspension at various shear stresses, figure 6. Considering first the smooth particle
suspensions, we see that both μ = 0 and μ > 0 experience no particle contacts at low
stress, with Z then sharply increasing, reaching a plateau similar to the trends seen in
ηr (figure 3). The same trend occurs for the aggregates: we find Z0.5 ≈ 0 when below
the critical stress (i.e. while the suspension is in the shear thinning regime) before rising
sharply to values of between 1.5 and 3 as we enter shear thickening. The increase in particle
coordination occurs over the same range of ηrγ̇

∗ as the shear thickening reported in
figure 3. In light of these results, we conclude that the observed shear thickening behaviour
for aggregates is a consequence of a sudden increase in the number of interlocking particle
contacts (to around 50 % of the asperity size) above a critical shear stress.

On the whole our rheology data suggest that aggregate particle rheology can be
described analogously to that of smooth particles, using an appropriate φm along with
models for the viscosity such as Krieger & Dougherty (1959) and Wyart & Cates (2014).
Relating the maximum packing to just a sliding friction coefficient is not straightforward,
however, as our measured values of Z suggest that roughness introduces other constraints
such as rolling and twisting.

4. Concluding remarks

The importance of particle interlocking on shear thickening in suspensions of rough
particles has been demonstrated through the use of a simple model comprising
hydrodynamic contributions, normal contact forces and medium-range repulsion. Our
model is both minimal in its physics and tractable in its computational expense, yet shows
agreement with relevant experimental findings.

We successfully predict the relative increase in viscosity for suspensions of increasing
surface roughness (Tanner & Dai 2016; Hsu et al. 2018) by explicitly modelling the
contacts that arise between surface asperities on aggregate particles, a feat which is not
possible in models that apply fictitious friction coefficients to smooth particles. Our model
is complementary to the latter, allowing explicit interaction of asperities and offering
a more resolved description of frictional contacts. We also demonstrated that particle
interlocking is important in describing the evolution of ηr with stress and jamming with
increasing φ, and were able to recover isostatic points in close agreement with theory.

We also invoked the idea of an effective solid fraction to explain the
roughness-independent rheology in the shear thinning regime. In particular, we concluded
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Figure 6. Mechanical coordination number as a function of dimensionless shear stress (ηrγ̇
∗) at various solid

fractions φ. (a) Smooth particles with μ = 0; (b) smooth particles with μ = 100; (c) aggregates with kr = 0.05;
(d) aggregates with kr = 0.10; (e) aggregates with kr = 0.20. For (a,b) ρ = 0.1(ai + aj); for (c–e) ρ = 3krah
and we use Z0.5. Insets show sketches of smooth and aggregate particles represented in each panel.

that in the shear thinning regime particles are held in a near-homogenous, non-contacting
state and their surface morphology becomes irrelevant to their interactions. As the imposed
stress is increased, however, we essentially shrink the ‘protective bubble’ around the
particles, exposing their asperities to interlocking. Here, surface details become important
to the bulk rheology and allow shear thickening. We do not observe shear thinning
in aggregates when the repulsive force is short ranged since the suspension is in a
permanently thickened, interlocking state. Moreover, if φ is increased, sterics mean the
particles will constantly be forced to contact one another regardless of the repulsive forces;
leading to greater levels of interlocking and higher viscosities.

From this collection of observations we identify 3 key practical outcomes: (i) all things
being equal, shear thickening will occur at lower shear rates for higher φ and/or higher
kr; (ii) as the length over which the repulsive force existing between particles is increased,
the shear rate required for thickening will increase; (iii) for aggregate suspensions with
comparable φ/φm and the same range of repulsive force decay (with respect to the size of
their asperities), the surface roughness will determine the point at which shear thickening
takes hold. In particular, as surface roughness is increased the shear rate at which shear
thickening occurs will decrease and the transition to thickening will take place at lower φ.
(This trend was also observed during shear stress controlled simulations (More & Ardekani
2020a).)
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As is true for most dense suspension models (Ness & Sun 2016), we are unable to fully
reproduce experimental normal stress behaviour. Our model overpredicts N1 during shear
thinning, yielding highly positive values in contrast to experiments which suggest N1 ≈
0. Hence, further investigation is required to understand the mechanism leading to this
discrepancy. Our model quickly becomes intractable for kr < 0.05 or for systems much
larger than O(102) aggregate particles; thus, there is a clear need to develop new methods
for dealing with particles of complex geometry.

We focused here on a simplistic geometry and a single value of nkr (the surface density
of asperities). A complete understanding of the link between tribology of rough particles
and rheology requires systematic exploration of a vast parameter space, evaluating the role
of geometry on sliding and rolling friction and particle interlocking and possibly requiring
a revisiting of our contact definition once n becomes large. Similarly, since many processes
involving dense suspensions (such as injection moulding, the spraying of agrochemicals
and fibre spinning) involve mixed shear and extensional flows (Galindo-Rosales, Alves
& Oliveira 2013; Andrade et al. 2020), future studies of aggregate particles should
address more generalised deformation types as has been started for smooth particles (Ness
et al. 2017a; Cheal & Ness 2018). Our model and its predictions demonstrate the new
tribological insight that can be gained by moving beyond the current paradigm of imposed
friction coefficients and seeking to build rheological understanding using models with
more detailed contact physics. This sets the scene for further fundamental advances in
achieving a robust fluid mechanics of dense suspensions, the outcomes of which may
be used to allow more informed design and processing of suspensions in engineering
applications.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.720.
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