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Absorbing-state transitions in particulate systems
under spatially varying driving

Bhanu Prasad Bhowmik * and Christopher Ness

Non-equilibrium transitions into absorbing states are widespread, and amorphous materials under cyclic

shear have emerged as useful model systems in which to study their properties. Recent work has

focused on homogeneous driving in which the shear amplitude is uniform in space, despite most real

world flows involving spatially inhomogeneous conditions that are known to produce qualitatively

distinct phenomenology. Here we study the absorbing state transition under inhomogeneous driving

using a modified random organization model. For smoothly varying driving the steady state results map

onto the homogeneous absorbing state phase diagram, with the position of the boundary between

absorbing and diffusive states being insensitive to the driving wavelength. The phenomenology is well-

described by a one-dimensional generalized continuum model that we pose. For discontinuously

varying driving the position of the absorbing phase boundary and the exponent characterising the

fraction of active particles are altered relative to the homogeneous case.

1. Introduction

Soft materials under cyclic deformation exhibit rich phenomenol-
ogy including self-organized criticality,1 mechanical annealing,2

yielding,3 fatigue failure,4 and absorbing state transitions.5 The
latter separate states where on one side the system remains stuck
indefinitely due to the absence of dynamics, and on the other is
ever-diffusing. They are relevant to applications such as
liquefaction6 and hopper unblocking,7 while recent fundamental
work has advanced basic understanding of non-equilibrium
physics,5,8–13 with implications for broader areas such as infectious
disease, reaction-diffusion dynamics, and forest fire propagation.1

In athermal particulate systems under cyclic deformation
with driving amplitude g less than a volume (or area) fraction f
dependent threshold gc(f), such systems attain special configura-
tions which reappear precisely after full cycles of deformation so
that, when viewed stroboscopically (with a period of 1 or occa-
sionally more cycles14), the system does not explore configuration
space. Above gc there exist active particles (CA) that do not return
to their initial positions so that the self-diffusion coefficient is
nonzero. These states are separated by a critical line on the f–g
phase diagram, exhibiting an equilibrium-like continuous transi-
tion with CA serving as the order parameter. To study the physics
of this transition it has proven useful to explore ‘random organi-
zation’ models,5,15–18 whose predictions suggest that it belongs to
the conserved directed percolation (CDP) class, though this is
altered in the presence of multiple or mediated interactions.19,20

Thus far, such models are reported for homogeneous driving only,
yet in practical scenarios involving cyclic driving of particulates
the driving rate may inherently be non-uniform. More broadly, the
role of spatial inhomogeneity in processes with absorbing states
is relevant to regionally varying immunity levels in disease spread-
ing scenarios, or to reaction–diffusion problems with spatially
varying catalytic activity. Moreover recent studies on various soft
materials21–26 reveal that the rheology of systems under homo-
geneous and inhomogeneous driving often differs qualitatively, so
that the response to the latter cannot necessarily be fully predicted
based on the former. Thus, in order to gain fundamental insight
into this more complex class of problems it is crucial to determine
whether the presence of spatially varying driving forces affects the
nature and position of absorbing state transitions in discrete
systems, and, importantly, whether homogeneous measurements
predict the properties of inhomogeneous systems.

We use a modified isotropic random organization model15,27

to study the absorbing state transition under inhomogeneous
driving. The control parameters are the overall area fraction �f of
particles of diameter s and their per-step displacement D. The
latter is an analogue of the oscillatory strain amplitude g, and we
impose spatial dependence D(y) to represent, e.g., the spatially
varying strain rate present in a flowing system. For diffusive
states we observe in the results a spatial inhomogeneity with the
local area fraction at y, f(y), being lower in regions where
the driving amplitude D(y) is large. For smoothly varying driving
(qD/qy exists at every point) with Ly/s = 7.7–400, the local active
particle concentration CA(y) matches that obtained under homo-
geneous conditions at the same D(y) and f(y), indicating that
the presence of gradients does not influence the properties of
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the D–f phase diagram. Here, Ly/s is the length of periodicity
in D(y). We thus explore a continuum model modified to
account for inhomogeneous driving, and find that it supports
the results of our simulation, which predicts the expected mean-
field exponents.28,29 Conversely, for discontinuous D(y) inhomo-
geneous effects play a role and the properties of the phase
diagram depend on the length Lc over which the driving remains
uniform. For Lc/s t 20, the position of the absorbing boundary
depends on Lc, while for a different case in which D = 0 for a
small fraction of particles Cp, the position and exponent of the
transition are Cp-dependent, indicating a change to the
universality class.

2. Simulation details

We simulate N = 5000–30 000 disks with diameter chosen from a
Gaussian distribution with mean s and standard deviation 0.2s
in a box of area Lx � L (with L an integer multiple of Ly,
wavelength of the spatial variation in the drive). Initially random
configurations having widespread particle overlaps evolve
according to the following deterministic rules. Particles not
overlapping with any other are inactive and do not move.
Particles with Z 4 0 overlapping neighbours are active and their

positions ri are updated following ri tþ dtð Þ ¼ riðtÞ þ Didt
PZ
j¼1

nji,

where nji are unit vectors pointing to particle i from each of its
contacts j, Di is the kick size for the ith particle, and dt = 1. In the
absence of any spatial heterogeneity, Di is the same for all
particles. A comparison between the random organization model
and the modified random organization model studied here is

presented in Fig. 1. The overall area fraction is �f ¼

PN
i¼0

psi2

4LxL
. We

produced the D–f phase diagram for spatially invariant D
(finding results consistent with ref. 15 and 30) and refer to it
in what follows. For inhomogeneous driving we initially let Di be

smoothly varying as DiðyiÞ ¼ �Dþ D0 sin
2pyi
Ly

� �
, Fig. 2(a) [Inset].

The inputs to our model are thus �f, �D, D0 and Ly, while the

observables we compute are the spatial profiles of the area fraction

fðyÞ ¼ 1

Lx

Ð Lx

0 fðx; yÞdx and the active particle concentration CA(y) =

NA(y)/N(y), with NA(y) and N(y) the number of active and total
number of particles at position y. Coarse grained profiles are
computed by binning particles in y before averaging the particle
properties in each bin. Results are averaged across 50 realisations.

We define the order parameter �CA ¼
1

L

Ð L
0
CAðyÞdy, and %CN

A as its

steady state value. All the simulations presented here are carried out
with periodic boundary conditions.

3. Results
3.1. Smoothly varying D(y)

Using sinusoidal D(y) we explore a range of �D (letting D0 = 0.03
s), �f and Ly, to investigate conditions that in principle span
across the homogeneous absorbing state phase boundary. The
typical time evolution of particles, starting from a randomly
generated configuration with high particle overlap, is presented
in Fig. 2. Model predictions are shown in Fig. 3. Inhomoge-
neous driving produces steady states with spatially varying f,
with regions of higher D(y) having lower f(y), Fig. 3(a), in
agreement with experiment31,32 and simulations with more
detailed physics.21,22,33 The local active particle concentration
CA(y) varies in the opposite direction to f(y) at small t, before
reaching steady states that are spatially uniform, Fig. 3(b). For
( �f, �D) above the homogeneous phase boundary (top panels of
(a) and (b)), the inhomogeneous system remains diffusive at
long times with CA(y) 4 0, whereas below the homogeneous
phase boundary CA(y) = 0 everywhere in the system. The system
never produces mixed absorbing–diffusive steady states with
CA(y) only locally vanishing.

Each inhomogeneous simulation produces a set of para-
metric points corresponding to lines across the D–f phase
diagram, bounded by D = �D � D0, Fig. 3(c). Initial states with
uniform f(y) appear as vertical D–f lines, before evolving with
time. Since the local activity at y is controlled by f(y) and D(y),
particles in regions with higher D have higher mobility and
move to regions with lower D, resulting in an increment of f

Fig. 1 Schematic representations of the dynamical rules for the previously
studied random organisation model (ROM)15 ((a) and (b)) and the modified
random organisation model (mROM) studied here ((c) and (d)). In both
cases, isolated particles (grey) are inactive, while particles in contact with
other particles (green) are active. In ROM, active particles are displaced by
a random amount, D, in a random direction, as indicated by black arrows.
In contrast, in mROM, an active particle is displaced by a fixed D in the
direction of the resultant unit vector formed by all unit vectors connecting
the particle to the centres of its neighbouring particles. The blue particle in
mROM, which is relevant for Section 3.3, is assigned to D = 0 and remains
pinned in its position.

Fig. 2 Time evolution of the system, starting from (a) a randomly gener-
ated configuration with many particle overlaps. The system continues to
evolve through successive times (b)–(c) until a steady state is attained
(d) for �f = 0.805, �D = 0.0515, and D0 = 0.03. The green and grey colours
represent active and inactive particles, respectively. The red line schema-
tically represents the spatial variation of D(y).

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
4 

M
ar

ch
 2

02
5.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

E
di

nb
ur

gh
 o

n 
4/

5/
20

25
 1

0:
15

:3
8 

PM
. 

View Article Online

https://doi.org/10.1039/d4sm01497a


This journal is © The Royal Society of Chemistry 2025 Soft Matter

and increase in activity in those regions. Thus, regions with
initial local parameters below the absorbing phase boundary
can increase in f(y) and thus become active. This process
manifests as a counterclockwise rotation of D–f, Fig. 3(c)
(top). For ( �f, �D) above the homogeneous phase boundary, after
this transient the system attains a diffuse steady state with D(y)
and f(y) balanced such that CA(y) becomes spatially uniform.
For ( �f, �D) below the phase boundary, the large-D regions do not
inject enough particles to the small-D regions to trigger activity,
thus leaving those areas with the same conditions as at the
beginning of the simulation and the resultant hook shape in
Fig. 3(c) (bottom). Fig. 3(d) shows steady state D–f lines as
functions of �f and �D. The colorbar stands for the magnitude of
CA(y), which decreases as ( �f, �D) approaches the phase boundary
from the diffusive phase and vanishes in the absorbing state.
Interestingly, the location of the critical line where CA(y)
vanishes overlaps with the homogeneous phase boundary
(dashed lines, Fig. 3(d)), so in principle a single inhomoge-
neous simulation can identify the entire homogeneous phase
boundary. In Fig. 3(e) the variation of %CA with time is shown for
various �f at fixed �D, D0. As in the homogeneous case, %CA

vanishes at low �f, indicating that absorbing states exist,
whereas above it saturates to non-zero steady states %CN

A char-
acterised by fitting the data to CA(t) = c0e�(t/t0)c1 + %CN

A , where c0,
t0 and c1 are constants.

As %CN

A serves as our order parameter, we investigate the
details of the absorbing state transition by examining its
dependence on the parameters. The measured values follow
%CN

A B ( �f � �fc)bf for fixed �D and %CN

A B ( �D � �Dc)bD for fixed �f,
Fig. 3(f), and we find bf = 0.64, in agreement with ref. 16 and 28
�fc = 0.7996, and bD = 0.45, close to the values reported by ref. 5,
with �Dc = 0.0513. Additionally, as the system approaches the
critical line from the absorbing phase, the time required to
reach steady state diverges as tN B ( �f � �fc)nf for fixed �D and
tNB ( �D � �Dc)nD for fixed �f, Fig. 3(g). We find nf = 1.37 with �fc =
0.7994, and nD = 1.33 with �Dc = 0.0513, in close agreement with
previous studies.5,16,28 Thus the position and nature of the
phase boundary obtained under inhomogeneous conditions
matches the homogeneous case. We verified that this holds
for Ly/s = 7.7–400, Fig. 3(f)–(h). We do not run simulations for
driving wavelengths smaller than 7.7, since driving with a
wavelength comparable to the particle size is not effectively
smooth.

3.2 Continuum model

Given that the phase boundary is governed by local conditions
only, we introduce a continuum model (Manna class34,35 with-
out noise36) modified for inhomogeneous driving by introdu-
cing convection in the system. Herein fA(y, t) and fI(y, t) are the
area fraction of active and inactive particles, related through

Fig. 3 Absorbing-state transition in inhomogeneously driven particulate material, showing the time evolution of spatial variation of (a) area fraction
f(y) and (b) active particle concentration CA(y), for systems that have steady states above (top, �f = 0.81) and below (bottom, �f = 0.79) the absorbing
phase boundary, with �D/s = 0.0515, D0/s = 0.03 and Ly/s = 160. (c) The D–f phase space showing parametrically f(y) and D(y) at progressing time.
The dashed line is the homogeneous phase boundary separating absorbing (pink) and diffusive (blue) states (legend in (a) applies also to (b) and (c));
(d) Steady state D–f lines for �D = 0.0515 at a range of �f (top) and �f = 0.8 at a range of �D (bottom), with D0 = 0.03. The color bar represents the
magnitude of CA(y); (e) Time evolution of mean active concentration %CA for various �f keeping �D, D0 fixed; (f) Variation of %CN

A with �f at fixed �D (green)
and �D at fixed �f (red (circles: Ly/s = 120; triangles: Ly/s = 11)); (g) Time tN to reach absorbing state below the phase boundary, with �f (red) and �D
(green). Solid lines in (f) and (g) are fits to f (x) = f0(x � xc)a; (h) example steady state D–f lines (parameters in legend) showing independence of Ly in the
diffusive regime.
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f(y, t) = fA(y, t) +fI(y, t), _f = _fA + _fI, and with CA = fA/f. The
dynamics are given by

_fA ¼
@

@y
D
@fA

@y

� �
þ @

@y
vfAð Þ

þ afAðf� fAÞ � gfA 1� fð Þ;
(1)

_fI = �afA(f � fA) + gfA(1 � f), (2)

where a and g are positive coefficients. a represents activation of
particles by interaction with active neighbours; g represents
isolated death (we omit caging37). The convection term in
eqn (1) arises due to spatially varying driving, where v is given
by dD/t, with dD = D(y + dy)�D(y), and t is the timescale, taken as
unity. The diffusion coefficient is given by D(y) B D2(y)/t. The
phase boundary can be estimated from the condition fA = 0,
rfA = 0 and _fA = 0. The coefficient a is directly related to D, and
for simplicity we choose a B D. Thus, the critical mean kick size
�Dc representing the phase boundary at a fixed �f is �Dc = g/ �f–g.

We solve these coupled equations numerically, with DðyÞ ¼
�Dþ D0 sin

2py
Ly

� �
and initial conditions f(y) = �f = 0.83, fA(y) =

f0
A = 0.65 using �D = 0.35, D0 = 0.05. Shown in Fig. 4(a)–(c) are

transients of f(y) and CA(y) in the diffusive regime, showing
qualitative agreement with Fig. 3(a)–(c) (top). In Fig. 4(d) are
steady state D–f lines spanning the absorbing phase boundary,
qualitatively matching the random organization model predic-
tions in Fig. 3(d). In the absorbing state (gray lines) the hook
shape in D–f appears as in the simulation, though with a
sharper curve and a vertical profile at lower D where the
dynamics cease quickly. The evolution of %CA with time is shown
in Fig. 4(e), approaching 0 and finite values respectively below
and above the phase boundary with the time scale t diverging at

the transition. We find %CN

A B ( �f � �fc)bc, with bc = 1 agreeing
with previously reported results29,37 for homogeneous driving.

3.3. Discontinuous D(x, y)

Next, we scrutinize the random organization model under
discontinuously varying D(x, y), where (x, y) represents the
coordinates of the centre of a cell. To do so we divide the
system into cells of area Lc

2, each having D = �D + Dr, with Dr a
random number chosen uniformly in the range �D0, ensuring
PNc

i¼1
Dr ¼ 0, where Nc is the number of cells. Dr assigned to every

cell is different for different realizations. Unlike smoothly
varying D, in this case, D can vary in both directions. We
verified our results for setups where D varies in either the
x- or the y-direction and found no qualitative difference. We
verified that the cell area is the key control parameter in what
follows; we show results for square cells though other aspect
ratios produce equivalent results provided the shorter length
scale exceeds the particle size. A schematic diagram of the
system is presented in Fig. 5(e), inset, showing how the system
is divided into many cells, with the colour of each cell repre-
senting the magnitude of D for that cell. Model predictions are

shown in Fig. 5. The transients observed for exemplar model
parameters match qualitatively those from the smoothly vary-
ing model, Fig. 5(a). Although the local volume fraction and
concentration of active particles vary spatially in both the x and
y directions, the figure shows the variation in the y direction by
averaging over the particles within each cell that share the same
x coordinate. In the steady state (blue points), f(y) is uniform
within each cell but changes sharply at the boundaries between
cells due to the variation in D (Fig. 5(a), top panel). As in the
smoothly varying case, active particles are distributed uni-
formly in the diffusive regime, (Fig. 5(a), bottom panel). How-
ever, steady state D–f data deviate significantly from the
homogeneous absorbing state phase boundary, Fig. 5(b). For
small Lc, states that would be deep within the absorbing state
remain active. This indicates that under discontinuously vary-
ing driving the absence or presence of an absorbing state
cannot be determined using local knowledge of f(y) and D(y):
the size of the containing cell matters. Presumably particles
near cell edges experience dynamics not described by eqn (1)
and (2) due to proximal discontinuities in D. Indeed, as Lc

increases (and fewer particles are near edges), the data tend
towards a diffusive line parallel to the homogeneous phase
boundary as would be expected for locally governed dynamics.
In Fig. 5(c) steady state D–f lines are shown for �D = 0.0515, D0 =
0.03 and a set of �f crossing the homogeneous phase boundary
(grey dotted line), for Lc/s = 30.9 and Lc/s = 8.26. The overall
trend is similar to smoothly varying D(y), but importantly the
position of the boundary under randomly varying D does not
match the homogeneous case, especially at small Lc. In fact,
even at the largest Lc investigated here we find a discrepancy

Fig. 4 Predictions of continuum model. Shown are the time evolution of
(a) f(y), (b) CA(y) and (c) the D–f line, from initialization up to a steady state
in the diffusive regime (parameters in legend of (c)). The color scale in (a)
applies also to (b) and (c); (d) steady state D–f lines for various �f at fixed
profiles of D(y); color bar shows the magnitude of CA(y). (e) Time evolution
of %CA for a range of �f spanning the absorbing phase boundary; (f) variation
of %CN

A (y) with �f keeping the D(y) profile fixed, with a solid line as in Fig. 3(f).
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between the inhomogeneous and homogeneous phase bound-
aries, suggesting, as mentioned above, that the discontinuous
variation in D occurring at the cell edges qualitatively affects
the material. Fig. 5(d) shows the variation of %CN

A with �f at fixed
�D for a range of Lc. The exponents match those in Fig. 3(f), but

crucially there is dependence of the critical point �fc on Lc.
We finally test the model for a fundamentally different type

of inhomogeneity in which a small subset of particles is
permanently inactive. To do so we modify the above model by
enforcing D = 0 for a small fraction Cp of particles, chosen
randomly. The remaining particles are assigned a fixed D, so
that the mean kick size is now given by �D = (1 � Cp)D. Particles
with D = 0 remain frozen in their initial positions, equivalent to
a pinning effect used widely in fundamental studies of various
systems.38–40 See blue particle in Fig. 2(c). From one point of
view, the pinned particles can be considered as special types of
impurities (quenched disorder) that break the translational
invariance of the system as well as introduce a new length scale
controlled by the mean inter-pinned particle distance. Since the
criticality associated with absorbing state transitions is gov-
erned by a diverging length scale, it would be interesting to

observe how the introduction of a length scale in the system
affects the nature of the criticality. Moreover, particle pinning
has recently been realized with the help of optical trapping in
colloidal systems,41 which provides an excellent setup for
verifying the observations from our simulations. From another
point of view, these particles can be considered obstacles
through which the flow is maintained. A similar setup was
recently used to study the reversible (absorbing)–irreversible
(diffusive) transition for repulsive disks.42,43

We run these dynamics for a range of Cp and �f, with D =
0.0515. Shown in Fig. 6(a) is the resultant variation of the steady
state %CN

A . The points are simulation data, and solid lines are fits
to %CN

A B (f�fc)b. The critical area fraction �fc and exponent b
both decrease with increasing Cp, Fig. 6(b) and (c), suggesting a
change in the nature of criticality due to particle pinning,44

which might arise due to potential shortening the range of
interactions in the system.20,45,46 The solid line in (b) repre-
sents a fit using the function b = ae�bxc

+ b0, indicating that b
approaches an asymptotic value of b0 = 0.46. It is noteworthy
that systems with Cp \ 0.1 exhibit different behaviour as the
pinned particles percolate the system, effectively causing it to

Fig. 5 Model predictions with discontinuous D(x, y). Shown are panel (a) top, panel (a) bottom and panel (b) time evolution of the f(y), CA(y) and D–f for
�f = 0.80, with �D = 0.056, D0 = 0.03 and Lc/s = 33.1, showing similar behaviour to the smoothly varying case. The sudden jumps in f(y) are due to the
discontinuous nature of D(x, y). (c) Steady state D–f lines for �f = 0.80, �D = 0.054 and D0 = 0.03, as a function of cell size Lc. The dashed line shows
homogeneous absorbing state phase boundary. (d) Steady state D–f lines for �D = 0.0515, D0 = 0.03 at different �f values for Lc = 30.9 (top) and Lc =
8.26 (bottom). Grey dotted lines are the homogeneous absorbing phase boundary and the color bar represents CA(y); (e) variation of %CN

A with �f, keeping
�D = 0.0515, showing the changing position of the boundary with Lc. Solid lines follow the form in Fig. 3(f). Inset: Schematic representation of the system

with random variation of D(x, y). Each grid has the same value of D, with the colour representing its magnitude.

Fig. 6 Absorbing state transition with permanently inactive particle fraction Cp. (a) Steady state mean active particle concentration %CN

A as a function of �f
for varying Cp with D = 0.0515; variation with Cp of (b) the critical exponent b and (c) the critical area fraction fc. The solid line in panel (b) is a fit using the
function b = ae�bxc

+ b0 suggesting that b approaches an asymptotic value b0 = 0.46. (d) Time tN to reach absorbing state below the phase boundary
with associated critical exponent n = 1.37 and 1.1 for Cp = 0 and 0.025, respectively. In (e), %CA versus Cp is plotted at two high volume fractions to illustrate
the absence of any crossover in %CA for systems with Cp = 0 and Cp 4 0, as suggested by the extrapolated fit in (a).
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behave as a porous medium. At high Cp, active particles tend to
form clusters that do not diffuse within the available simulation
timescale. We also observe a change in the critical exponent n
associated with the diverging time scale required to reach an
absorbing state, tN B ( �fc � �f)n. The exponent n decreases from
1.37 for Cp = 0 to 1.1 for Cp = 0.025, providing further evidence of
a departure from the CDP universality class due to particle
pinning. It is important to clarify that although the extrapolation
of solid fits in panel (a) suggests that at high �f, systems with
higher Cp might have lower %CA, such a crossover does not occur
as shown in panel (d). This discrepancy arises because the
functional form %CN

A B (f � fc)b is valid only close to the critical
point and tends to overestimate %CA at large �f.

4. Conclusions

We study the absorbing state transition in particulate systems
under inhomogeneous driving using a modified random orga-
nisation model, which produces spatial variation in f, resulting
in distinct points in the D–f phase diagram. This behavior is
replicated by a continuum description incorporating a convec-
tive term. The critical line separating absorbing from diffusive
states is unchanged for smoothly varying driving, while for
discontinuously varying driving, the position of the absorbing
phase boundary can deviate, suggesting potential manipulation
by altering the driving heterogeneity. Our findings indicate
that, although homogeneous and inhomogeneous rheology of
the particulate system differ qualitatively, in the case of the
absorbing state transition, predictions from spatially homoge-
neous conditions apply only to inhomogeneous systems with
smoothly varying driving, highlighting the need for further
study of absorbing states under discontinuous driving.

In the presence of randomly pinned particles, the smooth
variation of the critical exponent b towards an asymptotic value
suggests a crossover from the CDP universality class to a new
universality class. Such a crossover has been observed in other
systems with quenched disorder.47,48 However, fully understand-
ing the true nature of this crossover requires systematic analysis
across different system sizes. Furthermore, it remains unclear
whether configurations at the critical point exhibit hyperunifor-
mity in the presence of quenched disorder. Addressing these
questions will require large-scale simulations, which will be
explored in future work. In addition to this, the study is limited
to the regime below jamming. However, an absorbing state
transition is also observed in the athermal cyclic deformation
of glassy systems,2,49–54 where the transition is discontinuous.
Investigating such transitions above the jamming volume fraction,
under heterogeneous conditions using a modified model,18 pre-
sents an intriguing direction for future work.

From a practical perspective, absorbing state transitions,
and the associated process of random organisation, are rele-
vant to the burgeoning area of active viscosity control in dense
suspension rheology.55 In a recent series of articles it has been
demonstrated that acoustic modulation provides fine control
over suspension viscosity,56,57 and similar approaches have

been demonstrated in practical applications.58,59 Here it is likely
that the vibrations are attenuated with growing distance from the
source, so that random organisation under spatially inhomoge-
neous driving, as we study in this article, is the relevant mecha-
nism driving the viscosity reduction. Moreover, while we focus on
particulate systems, our findings may also prove beneficial for
understanding absorbing states in other systems characterized by
spatial inhomogeneities in the control parameters.

Data availability
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5 L. Corté, P. M. Chaikin, J. P. Gollub and D. J. Pine, Nat.

Phys., 2008, 4, 420–424.
6 Y. Huang and M. Yu, Nat. Hazards, 2013, 65, 2375–2384.
7 A. Janda, D. Maza, A. Garcimartn, E. Kolb, J. Lanuza and

E. Clément, Europhys. Lett., 2009, 87, 24002.
8 D. J. Pine, J. P. Gollub, J. F. Brady and A. M. Leshansky,

Nature, 2005, 438, 997–1000.
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Lett., 2007, 99, 234503.
11 K. Hima Nagamanasa, S. Gokhale, A. K. Sood and

R. Ganapathy, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2014, 89, 062308.

12 D. Fiocco, G. Foffi and S. Sastry, Phys. Rev. E: Stat., Non-
linear, Soft Matter Phys., 2013, 88, 020301.

13 J. Wang, J. M. Schwarz and J. D. Paulsen, Nat. Commun.,
2018, 9, 2836.

14 C. F. Schreck, R. S. Hoy, M. D. Shattuck and C. S. OHern,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013,
88, 052205.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
4 

M
ar

ch
 2

02
5.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

E
di

nb
ur

gh
 o

n 
4/

5/
20

25
 1

0:
15

:3
8 

PM
. 

View Article Online

https://doi.org/10.1039/d4sm01497a


This journal is © The Royal Society of Chemistry 2025 Soft Matter

15 E. Tjhung and L. Berthier, Phys. Rev. Lett., 2015,
114, 148301.

16 L. Galliano, M. E. Cates and L. Berthier, Phys. Rev. Lett.,
2023, 131, 047101.

17 D. Hexner and D. Levine, Phys. Rev. Lett., 2015, 114, 110602.
18 C. Ness and M. E. Cates, Phys. Rev. Lett., 2020, 124, 088004.
19 A. Ghosh, J. Radhakrishnan, P. M. Chaikin, D. Levine and

S. Ghosh, Phys. Rev. Lett., 2022, 129, 188002.
20 R. Mari, E. Bertin and C. Nardini, Phys. Rev. E, 2022,

105, L032602.
21 K. Saitoh and B. P. Tighe, Phys. Rev. Lett., 2019, 122, 188001.
22 B. P. Bhowmik and C. Ness, Phys. Rev. Lett., 2024,

132, 118203.
23 J. Goyon, A. Colin, G. Ovarlez, A. Ajdari and L. Bocquet,

Nature, 2008, 454, 84–87.
24 K. Kamrin and G. Koval, Phys. Rev. Lett., 2012, 108, 178301.
25 P. Chaudhuri, V. Mansard, A. Colin and L. Bocquet, Phys.

Rev. Lett., 2012, 109, 036001.
26 P. Chaudhuri and J. Horbach, Phys. Rev. E: Stat., Nonlinear,

Soft Matter Phys., 2014, 90, 040301.
27 L. Milz and M. Schmiedeberg, Phys. Rev. E: Stat., Nonlinear,

Soft Matter Phys., 2013, 88, 062308.
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