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We study the viscoelastic response of amorphous polymers using theory and simulations. By accounting

for internal stresses and considering instantaneous normal modes (INMs) within athermal non-affine

theory, we make parameter-free predictions of the dynamic viscoelastic moduli obtained in coarse-

grained simulations of polymer glasses at non-zero temperatures. The theoretical results show very

good correspondence with rheology data collected from molecular dynamics simulations over five

orders of magnitude in frequency, with some instabilities that accumulate in the low-frequency part on

approach to the glass transition. These results provide evidence that the mechanical glass transition itself

is continuous and thus represents a crossover rather than a true phase transition. The relatively sharp

drop of the low-frequency storage modulus across the glass transition temperature can be explained

mechanistically within the proposed theory: the proliferation of low-eigenfrequency vibrational

excitations (boson peak and nearly-zero energy excitations) is directly responsible for the rapid growth

of a negative non-affine contribution to the storage modulus.

1 Introduction

Molecular simulations can provide detailed insights into the
fundamental dynamics and related viscoelasticity of glass-
forming polymers. Yet, a key challenge lies in collapsing this
information into compact theoretic models that extend our
understanding of macroscopic mechanics and ultimately
inform engineering decisions. The dynamics of glasses and
other amorphous materials under even small deformations are
complex compared with most crystalline solids. In centrosym-
metric idealised crystals at low temperature, lattice inversion
symmetry ensures that atoms are displaced homogeneously
under applied deformation, i.e. all displacements are affine.
The sum of forces on each atom in the deformed configuration
is thus zero due to centrosymmetry, leading to straightforward
determination of the elastic properties.1 Amorphous solids, in
contrast, lack such symmetry, and rather exhibit a static snap-
shot configuration closer to that of liquids. As a consequence,
net remnant forces under shear displace the atoms from their

affine positions, causing the so-called non-affine deformation
(Fig. 1). Except at infinite frequency of applied shear, where this
non-affine relaxation is inhibited, classical affine microscopic
theory fails to predict the mechanical deformation behaviour of
amorphous solids.2

Recent works address this shortcoming using theoretical
models based principally on solutions of the equation of motion
for the non-affine displacement of a tagged atom.2–5 A correction
to the stress response can be obtained2 by enforcing mechanical
equilibrium on every atom at all steps in the deformation: the
forces arising when nearest-neighbour atoms try to find their
affine position are relaxed at all steps, and the displacement field
which satisfies the mechanical equilibrium contains additional
non-affine displacements on top of the affine ones. This non-affine
deformation framework is crucially dependent on the vibrational
density of states (VDOS), since one needs to evaluate this force-
relaxation over the whole space of degrees of freedom, and on a
quantity which describes how the force field due to affine
displacements depends on eigenfrequency.2,6 Both the VDOS
and the eigenmode-correlator of the affine force-field are found
by diagonalisation of the Hessian matrix of the system. Importantly,
the low-frequency part of the VDOS makes the most substantial
contribution to the viscoelastic moduli, which is consistent with the
observation of anomalous soft modes in glasses.7–9 These
modes arise from the lowest energy barriers for rearrangements
of atoms.10–12
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The non-affine deformation framework as described above
assumes that the system is athermal. Practically, this means
that the system resides at, or very close to, a local minimum of
the potential energy, fluctuations are negligible, and features of
the behaviour are described by standard normal mode analysis.
In reality, however, the system spends most of its time off the
energy minimum even at low non-zero temperatures. One
approach to the computation of the VDOS in this case is based
on instantaneous normal modes (INM).13,14 Instead of using
the energy of the system at the potential minimum as in
conventional normal mode analysis, single snapshots of the
system are considered and averaging is performed over the
snapshots. This method was earlier applied to liquids15 as well
as glassy systems such as LJ glass,16 silica17 and proteins.18 The
instantaneous normal modes of liquids have predictive power
only at high frequencies.19–21 For amorphous solids these
modes can be defined at much slower timescales, i.e. some
properties of solids as well as the glass transition can be
associated with INMs.22

In this work we show that a combination of the non-affine
theory and the INM approach produces quantitative parameter-
free predictions for viscoelastic behavior of amorphous solids.

We compute the VDOS and correlators of affine forces from
averages over snapshots of the system rather than from a long-
time average, which is necessary for taking the temperature-
dependent unstable modes into account.14 As a model system
we use polymer glasses. However, the method and the results
are relevant far beyond this particular system. Our choice is
based on high practical relevance of polymer materials and the
fact that their complexity better highlights the usefulness of the
theory. The storage modulus G0 computed within our frame-
work matches results from simulations across a wide range of
temperatures, the only departure being at low frequencies around
and above Tg, where the timescale for structural relaxation com-
petes with that of the externally applied shear, thus violating our
harmonic approximation. The loss modulus G00 is qualitatively
predicted across the full range of temperatures explored, though
the quantitative agreement is not as good as that for G0.

As temperature is increased, the system spends more time
further away from local potential energy minima,23 leading to
increased importance of INMs as well as local internal stresses
(because away from the minimum the first derivative of inter-
molecular interaction is non-zero). Once the internal stresses
are included, the analysis produces some negative eigenvalues,
which correspond to imaginary frequencies in the VDOS and
therefore to non-propagating relaxation modes down from saddles
(these modes are localised). The number and the density of these
relaxation modes grow with temperature, reflecting an increasing
instability of the system. Importantly, this growth is continuous
across the glass transition, providing evidence that the glass
transition, at least in its mechanical manifestations, has hallmarks
of a crossover rather than a true phase transition. As such, our
approach offers fundamental insights into the mechanics of
amorphous materials across the glass transition, as well as a
robust prediction of the viscoelastic properties of real amorphous
materials across both solid and liquid states.

2 Theory and simulations

We focus on the case of small deformations, within the regime
of linear viscoelasticity and avoiding complications such as shear
banding,24 local anharmonicity and nonlinear plastic modes,25,26

all of which lie out of the scope of our approach. Our formalism
below is written accordingly. The non-affine theory2–4 computes
corrections to the elastic moduli due to additional displacements
caused by an extra net force from neighbours in the case of non-
centrosymmetric materials (Fig. 1). The non-affine displacements
cause softening of the material. The corresponding correction to
the elastic free energy is negative and for shear deformation it can
be expressed as

F ¼ FA � FNA ¼ FA �
1

2

@f i
@g

@ri
@g

g2; (1)

where the affine part FA was given already by Born and Huang,1

g is a shear angle (shear strain amplitude), fi is the net force
which acts on the atom i in its affine position (see Fig. 1), ri is
radius-vector to i-th atom, and �FNA is the non-affine contribu-
tion to the free energy. If the interactions between the atoms

Fig. 1 (a) Affine (top) vs. non-affine (bottom) deformation. In the case of
affine deformation the forces acting on a selected atom from its neigh-
bours add up to zero. This changes in the case of non-affine deformation.
The net force (affine force field) is non-zero and causes an additional
displacement. The blue and red colors denote the atoms belonging to
different polymer chains. (b) Instantaneous normal mode method uses the
instantaneous positions of atoms (translucent spheres) rather then the
positions at the minimum (solid sphere).
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are described by harmonic central forces then eqn (1) can be
written as27

F ¼ FA �
1

2
NiH ij

�1Njg2; (2)

where an affine force field Ni is responsible for a force fi = Nig
acting on atom i, and Hij is the Hessian (which for a system of N
particles has size 3N � 3N), which includes the internal stresses
induced by thermal fluctuations via the INMs (for details see
ESI†). Summation over repeated indices is implied. Assuming
the system dwells in the vicinity of a local energy minimum, the
microscopic equation of motion for a particle of mass m can be
written as that of a damped harmonic oscillator

mr̈i + n:ri + Hijrj = Nig, (3)

where the second term characterises energy dissipation due to
viscous damping (with friction coefficient n), the third term is
the harmonic force pulling the particle back into the minimum
and the right hand side is the non-affine force, which depends
on the shear amplitude g.

Transformation of eqn (3) into Fourier space allows us to
obtain an expression for the complex viscoelastic modulus,
which in the continuous limit reads (see ref. 2 for more details)

G�ðOÞ ¼ G0 þ iG00 ¼ GA �
1

V

X
k

G okð Þ
mok

2 �mO2 þ iOn
; (4)

where O is the applied strain frequency, G(ok) = hNp
2iopA[o,o+do]

is the affine force field correlator, and GA is the affine
contribution.1 The important quantity, which implicitly enters
the expression, is the vibrational density of states D(ok) normalised
as
P
k

D okð Þ ¼ 1. The inputs to the expression for G* (O) are the

eigenvalues (ok) and eigenvectors (through G(ok)) of the Hessian
matrix Hij, which we obtain from molecular simulations of
glassy polymer configurations as described in the following. It
is important to stress here the difference to ref. 2. In ref. 2 it is
assumed that the Hessian is positive definite. In our approach
consideration of INMs leads to the appearance of the negative
eigenvalues of the Hessian, i.e. summation includes the imaginary
part of the frequency (VDOS) spectrum.

In the thermodynamic limit the summation can be
expressed as an integral over the frequency domain:

G�ðOÞ ¼ GA �
3N

V

ð
C

DðoÞGðoÞ
mo2 �mO2 þ iOn

do; (5)

where O is as an applied strain frequency, GA is given in the
ESI† and n is a constant friction. The integration should be
performed over a contour which includes the positive part of
imaginary axis of o values and the positive part of real axis.

Two sizes of polymeric systems were considered, where the
number of linear homopolymer chains is either N = 50 or
N = 100 and the chain length is fixed at M = 100. All dynamics
used the LAMMPS28 code under periodic boundary conditions.
We explored the role of chain length on the vibrational properties
in an earlier article and verified therein that there is no size
dependence in this system when N Z 50.40 We adopt the

conventional Kremer–Grest bead-spring model,29 i.e. polymer
backbone covalent bonds were simulated using a finite extensible
nonlinear elastic (FENE) potential, while non-bonded interactions
were represented by a shifted Lennard-Jones (LJ) pair potential.

For the FENE potential UFENE ¼ �0:5KR0
2 ln 1� r

R0

� �2
" #

the

parameters were set as K = 30, R0 = 1.5. This choice of
K provides a separation in characteristic frequency that is
instructive when interpreting the VDOS. For LJ potential

ULJ ¼ 4E
s
r

� �12
� s

r

� �6
� s

rc

� �12

� s
rc

� �6
 !" #

the constants were

chosen to be E = 1, s = 1 and the cutoff radius rc = 2.5 (which
matches that used in the computation of Hij). Bead trajectories
are updated according to Langevin dynamics, with a damping
constant x (which is related to the theoretical damping term by
x = m/n). E sets the LJ energy scale and K is the bond energy
scale, where K/E = 30. With reference to fundamental units of
mass M, length d, and energy E, we set s = 1 and m = 1, giving a

time unit of t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=E

p
. We report frequency in units of 1/t

and temperature in units of kbT throughout. We equilibrate the
system in a melted state at T = 1.0, maintaining zero external
pressure using a Nose–Hoover barostat. We then cool the system
by decreasing T with a characteristic timescale tc E 7 � 103t
following the equation T(t) = Tstart(1 � t/tc) + Tend(t/tc) until the
target temperature is reached. A typical size of a cubic simulation
box after the equilibration was about 17 length units for systems
with 5000 monomers and about 21 units for 10 000 monomer
systems.

We then obtain the viscoelastic moduli by mechanical spectro-
scopy, applying small amplitude oscillatory simple shear strain to
the sample as in ref. 5 and 30. For every sample we have
simulated 20 periods of the applied periodic strain, beyond
which there is no further change to the stress–strain relation-
ship (see illustrations in the ESI†). From the stress–strain
curves we compute the storage G0 and loss G00 moduli

G0 ¼ s0
e0

cos d; G00 ¼ s0
e0

sin d; (6)

where s0 is the average amplitude of stress, e0 is the amplitude
of strain (fixed at 2%) and d is a phase shift between the two.
We have checked that 2% strain is still in the linear regime and
produces the same results for G0 and G00 as strains of 0.5% and
1%. We have encountered the lower limit of simulating the
moduli at lower frequencies (Ot 0.001–0.01) due to the increase
of the noisiness of the simulation results and the difficulty of
approximation of the data with trigonometric functions.

The cooling procedure is initiated with a random seed so
that each realisation has a different arrangement of the beads. In
order to estimate the error we have obtained 5 different realisations
in order to smooth out the sample-specific effects. The error bars in
Fig. 2(e and f) and Fig. 3 are standard deviations of the averaging
over these realisations. The theoretical results also have some
spread in values and, thus, we show their standard errors. We do
not show errors in Fig. 2(a–d) to avoid obstructing the view. The size
of the error bars in all cases can be understood from Fig. 2(e and f).
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3 Viscoelastic moduli

Using the methods described in the previous section we first
compare theoretical predictions of G0 and G00 (obtained using
instantaneous static simulation snapshots to form the VDOS
with INM) against simulation results obtained by mechanical
spectroscopy for low temperature, T = 0.1. Fig. 2(a and b) shows
the storage (a) and loss (b) moduli for low and high internal
friction n (cf. eqn (4) and x in simulation description), respectively.
For the corresponding friction coefficients, the theory provides a
good quantitative prediction of the mechanical spectroscopy data
(continuous lines and symbols, respectively, in Fig. 2(a and b))
without any free parameter.

The peaks in G0(O) (Fig. 2(a)) correspond to the strongest
resonances in the system. The highest peak is located close to
the resonance frequency of FENE bonds oFENE E 31.3, while
the peak at lower frequencies is located between the FENE bond
peak and the LJ resonance frequency (oLJ E 7.56). Between the
peaks G0 falls to very small values. With an increase of the
friction, the transition from the high frequency regime to low
frequency regime is smoother, with resonances being smeared
off. At very low frictions (not shown) the theoretical curves show
a number of small single frequency resonances, consistent with
low temperature results produced by non-affine theory without

INMs for amorphous silica glasses.5 In our case the friction is
constant (Markovian) by construction of the molecular simulations
with Langevin thermostat, and not a function of O. In some real
materials such as metallic glass this may not be the case, and an
extension that includes a memory-function for the friction has
been reported recently.31 In the context of interpretation of
experiments one would need to determine the effective friction.
The friction could be found for instance from an analysis of the
atoms’ trajectories under the assumption that the atoms move
according to the Langevin equation.

Increasing T mostly affects the values of the moduli at low
frequency, shown in Fig. 2(c and d). The storage modulus drops
substantially after the temperature exceeds the glass transition
temperature Tg = 0.4, i.e. upon ‘‘disorder-assisted’’ melting.4 On
the contrary, the loss modulus grows with temperature, which
also reflects a growth in dissipation defined usually as G00/G0.
The glass transition temperature Tg of our system, which we
determined earlier from the change of thermal expansion
coefficient for this system,32 is consistent with the behaviour
of the moduli at low frequencies. The data from simulations
for low frequency O = 0.03 (Fig. 2(e)) show that G0 drops
significantly at T E 0.4 and thereafter smoothly tends to zero,
which is consistent with recent results33,34 obtained from the

Fig. 2 Dependence of viscoelastic moduli on the frequency of external shear O and temperature T obtained from theory and simulations. (a),
(b) respectively, G0(O) and G00(O) for two different values of friction, which correspond to n in theory and connected to a Langevin thermostat damping as
n = m/x. T = 0.1, N = 100, M = 100. The dashed vertical lines correspond to the frequencies in figure (e and f). (c), (d) respectively, G0(O) and G00(O) from
LAMMPS simulations for the dependence of storage modulus G0 as a function of the deformation frequency for different temperatures, N = 50, M = 100.
To highlight the applicability of the theory the dark blue dashed line shows the result for T = 0.05 while the red dashed line is the result for T = 0.4.
(e) Comparison of theoretical predictions with the mechanical spectroscopy simulations for G0 as a function of temperature. The data are shown for low
(O = 0.03), middle (O = 20) and high frequencies (O = 200), N = 50, M = 100, n = 1. (f) Comparison of theoretical predictions with the mechanical
spectroscopy simulations for G00 as a function of temperature. The data are shown for three frequencies in the vicinity of the loss peak, (O = 10.5, O = 48,
O = 70), N = 50, M = 100, n = 1. In all cases the theoretical and simulation results were obtained for 5 realisations of a corresponding system and then
averaged.
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stress-fluctuation formalism.35 In order to show the limitations
of our approach we plot dashed lines with theoretical results in
Fig. 2(c and d) for T = 0.05 and T = 0.4. It is clear that at low
frequencies the simulation and the theory do not match each
other well at the glass transition point. In order to better
compare the theory with simulation data at different temperatures
we have plotted values of the storage modulus for high frequencies
and intermediate frequencies in Fig. 2(e). We see that the theory is
able to predict the storage modulus even in the liquid phase for
moderate to high oscillation frequencies O. Fig. 2(f) shows the
comparison of theoretical and simulation data for the loss modulus.
Since at very low and very high frequencies the values of G00 become
very small and rather noisy, we have chosen a set of frequencies
different from that used for the plot of the storage modulus
(Fig. 2(e)). We observe that the match between the theoretical
predictions and the simulation data is less quantitatively accurate,
but is qualitatively good at intermediate and high frequencies.

Although the non-affine approach was developed originally
for the athermal case,2,27 the success of its predictions shown
in Fig. 2(a, b, e and f) suggests that our inclusion of INMs and
internal stresses makes it applicable over a broad range of
temperatures, even above Tg. We have checked that upon
computing the VDOS in the standard way, taking configurations
from long-time energy-minimised simulations (which washes
out the relaxation modes and the internal stresses), the comparison
with simulation data is much worse.

With an increase of T to a value close or above Tg, the
predictions of INM non-affine theory get less quantitatively accu-
rate at low frequency (see Fig. 2(e)). We believe that a growing
mismatch with mechanical spectroscopy data is caused by the
increased anharmonicity and by swaps of nearest-neighbours.
Even at non-zero temperatures for moderate and high frequencies
of shearing, the atoms mostly dwell around their local minima,
hence the harmonic approximation holds, although internal stres-
ses resulting from displacements off the minima are important
and are taken into account via the INM in our theory. Increase of
the external shearing period (for O { 1) leads to the increase of
atom mobility, because the atoms have more time to relax their
positions with respect to their neighbours. Indeed, in the ESI† we
show results illustrating that the number of nearest neighbour
changes increases with period and temperature. Moreover, we
observe a crossover to a more active increase in number of swaps
of nearest neighbours once the temperature exceeds Tg. Since
these swaps are not taken into account in eqn (3), a mismatch
arises at the low frequencies once T approaches and even more
when it exceeds Tg. One can also notice that the agreement
between the theory and simulations for the storage modulus G0

(Fig. 2(e)) is better than for the loss modulus G00 (Fig. 2(f)) except for
very low temperatures. The possible reason can be attributed to the
increase of the dissipation with temperature which in turn leads to
an increased number of monomer relocations.

4 Analysis of vibrational excitations

If the Hessian matrix is computed for instantaneous atom
positions instead of positions taken from a minimised energy

state of the system, then the diagonalisation of Hij produces
negative eigenvalues.13,14,37 Their presence indicates that the
local slope and curvature of the energy hypersurface has
nonconvex components, so the density of these modes is linked
to non-propagating relaxation from local saddles (produced
by thermal excitation) in the energy landscape.13 Since the
instantaneous positions deviate more from their rest positions
as the temperature is increased, the behaviour of the negative
eigenvalues, which correspond to imaginary frequencies,
correlates with softening of the material and the transition
from solid-like to liquid-like properties.

In Fig. 3 we plot the overall fraction of vibrational modes
that are negative as function of temperature. The behavior of
unstable modes is rather similar to silica glasses from ref. 17
and the small protein system from ref. 18: they appear once the
temperature gets above zero. This fraction could also be
obtained by the ratio of the areas of imaginary part of VDOS
to the real one (see Fig. 4(a)). To understand the nature of these
negative modes, we compute a standard measure of localisation, the
participation ratio p(oj). For an eigenmode with the eigenfrequency
oj, it is defined as:

p oj

� �
¼

PN
i¼1

ui
2 oj

� �� �2

N
PN
i¼1

ui4 oj

� � ; (7)

where ui(oj) is the total amplitude of the i-th atom’s eigenvector.
p(oj) quantifies the number of particles participating in a single
mode. For instance, for an isolated particle one has p = 1/N, while if
all particles are involved in a single mode p = 1. For an amorphous
polymer solid, which we consider here, the participation ratio shows
substantial change with an increase in temperature (Fig. 5).

As is customary,13 we show imaginary frequencies as negative
ones. For low temperature (T = 0.05) almost all frequencies are
real and the values of participation ratio for the frequencies close

Fig. 3 Percentage of negative eigenmodes of the Hessian matrix as a
function of temperature, N = 50, M = 100. The data points were obtained
by averaging over 5 realisations for every point.
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to 0 are in the range 0.05–0.15. As the temperature approaches
and crosses Tg, more modes become unstable. At around Tg the
shoulder of the first band of participation ratio (with values
0.4–0.5) is crossing into the unstable domain with values of
participation ratio at o B 0 in the range 0.35–0.45. However,
there is no special feature visible at Tg = 0.4 and the process
appears smooth across the glass transition. This calculation also
shows that the unstable relaxation modes are localised, with low
values of participation ratio of imaginary-frequency modes.

One can notice that even for the data at the lowest temperature
T = 0.05 the participation ratio at low (real) frequencies has values
around 0.2–0.4, i.e. the long-wavelength phonons, which are
supposed to have p E 0.6, are not apparent. This does not
mean, however, that the phonons are not present. The necessary
truncation of the system size in simulations often leads to small
values of p(o) at the phonon frequencies, which is not unusual
for delocalised modes.38 Interestingly, just like in the case of
dependence of viscoelastic moduli on the temperature, there are
no obvious signatures of a transition in p(o) at or near Tg.

This corroborates the seminal idea of Y. Frenkel,36 that, in
the case of amorphous solids, there is a continuity between the

liquid and solid states at least for the mechanical properties,
and that, indeed, liquids behave like solid glasses at sufficiently
high frequency of deformation.

On the microscopic scale, the viscoelastic properties are
controlled by the vibrational density of states D(o) and affine
force field correlator G(o) (see eqn (4)), both of which contribute
to non-affine softening. The density of vibrational states for a
polymeric amorphous solid at low temperatures consists of two
prominent features (Fig. 4(a)): a large peak upon normalizing by
Debye’s Bo2 law, the so-called ‘boson peak’, which is associated
with LJ interactions between beads; and a plateau at higher
frequencies corresponding to FENE bond and collective bond-LJ
vibrations.39,40 The boson peak can be measured by neutron
inelastic scattering experiments for instance for polyethylene41

or PDMS.42

An increase of temperature leads to the shift of boson peak
and the FENE-bond plateau to lower frequencies (Fig. 4(a)),
which increases the non-affine contribution (see eqn (4)) and,
thus, makes the material softer. The increase of the boson peak
and its shift to lower frequencies clearly gives rise to an increase
(in absolute value) of the non-affine integral due to the weight in
the denominator which gives high weight to the low-o part of
the VDOS (Fig. 4(c)).

Clearly the VDOS in Fig. 4(a) has a model specific shape.
Additional interactions could bring in other peaks as we have shown
earlier by considering the influence of angular potentials on the
vibrational density of states.40 In that case angular interactions gave
additional contributions to the Hessian. The analogous procedure
could be performed for dihedral interactions, hydrogen bonds, etc.
Generally, the characteristic energy of an interaction defines the part
of the VDOS it enters.40 Additional interactions will also affect the
viscoelastic properties.32,43,44 The main basis of our approach is the
harmonic approximation. If this assumption holds we expect that
the method will be useful for study of all-atom models as well as
coarse-grained models obtained from all-atom models by proper
renormalisation of cohesive interaction strength as a function of
temperature44 or direct coarse-graining.45,46

G(o) also increases strongly in the range of 20 r o r 30
(Fig. 4(b)). The large amplitude and fluctuations of G(o) in the

Fig. 4 Evolution of microscopic characteristics of polymer glasses with temperature. (a) Evolution of VDOS with temperature. N = 50, M = 100. One can
see that the boson peak moves towards smaller frequencies. The negative part of the frequency axis shows absolute values of imaginary frequencies,
which are obtained from the negative eigenmodes. Arrows show the change with an increase of temperature; (b) correlator G(o) for the same set of
temperatures as in (a) N = 50, M = 100; (c) the quantity D(o)G(o)/o2 for temperatures 0.05 and 0.4 as in (a) N = 50, M = 100.

Fig. 5 Participation ratio at different temperatures. (a) T = 0.05; (b) T = 0.3;
(c) T = 0.4; (d) T = 0.5. The imaginary frequencies are shown as negative
frequencies. N = 50, M = 100.
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high frequency part does not play a significant role for non-affine
contributions due to the fast growth of 1/o2 part in the integrand
in eqn (4). Thus, both the density of INMs and the correlator of
affine force field show features leading to the softening of the
material with increasing T. It is clear that in our case the cross-
over from solid to liquid state above Tg = 0.4 does not bring any
new microscopic signatures of a transition, i.e. the microscopic
INM-based non-affine approach, here quantitatively validated
against simulations, corroborates the idea of gradual and con-
tinuous amorphous solid–liquid crossover.

5 Conclusions

Prediction of the dynamic mechanical properties of amorphous
solids and liquids remains an open challenge in condensed
matter physics. In this article, we have combined microscopic
dynamical information about internal stresses in the form of
INMs with an athermal non-affine deformation theory. The
combined approach is capable of describing the viscoelastic
properties of polymer glasses, achieving quantitative predictions of
G0 across most frequencies and temperatures (except where the
structural relaxation rate begins to compete with external shearing
frequency) and qualitative agreement of G00 above and below Tg. The
drop of the low-frequency storage modulus at Tg is linked to growth
of the so-called boson peak (proliferation of soft modes above the
Debye o2 level) in the VDOS and its shift towards zero frequency/
energy, and with the gradual appearance of non-propagating,
unstable relaxation modes (imaginary eigenfrequencies) below Tg.
All other microscopic features of the vibrational excitations and
microscopic dynamics change continuously and gradually across Tg.
Our results support the view that the glass transition represents a
fundamental continuity between the liquid and the amorphous solid
state,47,48 at least for its mechanical and vibrational manifestations.
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