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ABSTRACT: We introduce a coarse-grained numerical model
that represents a generic DNA hydrogel consisting of Y-shaped
building blocks. Each building block comprises three double-
stranded DNA arms with single-stranded DNA sticky ends,
mimicked by chains of beads and patchy particles, respectively,
to allow for an accurate representation of both the basic
geometry of the building blocks and the interactions between
complementary units. We demonstrate that our coarse-grained
model reproduces the correct melting behavior between the
complementary ends of the Y-shapes, and their self-assembly
into a percolating network. Structural analysis of this network
reveals three-dimensional features consistent with a uniform
distribution of inter-building-block dihedral angles. When
applying an oscillatory shear strain to the percolating system, we show that the system exhibits a linear elastic response
when fully connected. We finally discuss to what extent the system’s elastic modulus may be controlled by simple changes to the
building block complementarity. Our model offers a computationally tractable approach to predicting the structural and
mechanical properties of DNA hydrogels made of different types of building blocks.

1. INTRODUCTION

DNA hydrogels belong to a class of semiflexible polymeric
networks that consist of synthetic nucleotide strands whose
binding is governed by base-pair complementarity.1−4 The
ability to precisely synthesize base sequences, and thus to
specify the binding rules a priori, makes such DNA-based
systems superior to conventional polymeric networks with
nonspecific interactions.5,6 Thanks to this uniquely program-
mable self-association, DNA hydrogels have found applications
in areas such as drug delivery,1 3D cell cultures,7 and
bioprinting.8 In recent works, the phase diagram and some
aspects of the rheological behavior of DNA hydrogels have
been reported,4,9−13 but robust links between base comple-
mentarity and structural and mechanical properties of the
resulting hydrogel at the bulk level are missing. Here we
establish a simulation model for DNA hydrogels that offers
predictions of the structural and mechanical bulk properties of
the sample. As we will argue below, our model can help to
design and understand experiments, thus providing guidance
for future material development.
Computational models of DNA implementing a wide range

of coarse-graining levels have been proposed, each focusing on
different aspects of the thermodynamics and polymeric nature
of DNA. For instance, atomistic models14−16 that provide
detailed dynamics of nucleotides have advantages in
investigating DNA folding and protein−nucleic acid inter-

actions, while bead−spring polymer models with up to 3000
base-pairs represented by one single bead offer a means of
obtaining bulk material properties at considerably lower
computational expense.17,18 Models adopting an intermediate
level of coarse-graining, most notably the OxDNA model,19

have been utilized in simulating several DNA nanotechno-
logical systems such as molecular machines.20−23 In these
models, ssDNA is presented as a chain of rigid nucleotide
beads with effective interacting sites that can reproduce DNA-
specific thermodynamics and structural properties.
This level of sequence specificity is, however, not always

required for simulating self-assembled DNA systems, especially
when all possible ssDNA interactions are well-known. In these
cases, the whole interacting “sticky” ssDNA sequence at the
end of a building block or chain can be treated as a single
“patch” with its potential matching the physical rules24−29 from
the viewpoint of statistical thermodynamics. This approach
maintains the function of ssDNA as a selective bond and at the
same time accelerates the simulation process allowing for large
numbers of building units that assemble into volume-spanning
structures with accurate geometry and topology.
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With regard to DNA hydrogels, our interest lies in the
structure and mechanics of large-scale systems; hence base-pair
models19,30−32 are too detailed. Computational models of
DNA gels self-assembled from branched DNA complexes have
been proposed to mimic the bulk behavior of the system,
particularly focusing on the assembly and gelation pro-
cesses.9,33 In those models, structural disorder of such systems
has been demonstrated and further discussed, but deeper
studies on the possible microstructures of the network, which
may facilitate future design of the system, is still absent.
Furthermore, the bulk mechanical properties of DNA gels have
not been mentioned in any of the present models, but these
parameters are actually key in testing some of the functions of
the materials. These are limited by the design of the models: in
Starr and Sciortino’s model,33 for instance, the basic geometry
of the DNA building blocks is not retained, and thus the
microscopic structures cannot be represented accurately.
Meanwhile, the OxDNA model and its equivalents9,11 are
too computationally demanding to be employed for the study
of bulk mechanics due to their consideration of the specific
base sequences in the building blocks. Therefore, a computa-
tional model of DNA hydrogels that both retains the DNA
binding rules and is light enough for calculating the bulk
properties is in great need.
Here, we discuss one class of DNA hydrogels that is self-

assembled from trivalent building blocks, which are known in
the literature as DNA nanostars or Y-shapes in the case of
nanostars with three arms. The Y-shapes comprise three arms
made of soft beads, with the terminal beads having attractive
patches that represent the ssDNA sticky ends.13 All Y-shapes in
the system have the same core structure; for illustrative
purposes, we give half of them one type of ssDNA on all three
arms, and the other half the complementary ssDNA. We first
give a detailed account of the numerical model and then go on
to explore the melting behavior, structural properties, and
linear bulk elasticity of our networks.

2. NUMERICAL MODEL
2.1. Y-Shaped Building Blocks. The geometric and interaction

parameters in our model are chosen to represent the structure of the
Y-shaped DNA units used in experimental work conducted by Xing et
al.13 In our simulation, we use a bead−spring model34 to represent the
dsDNA arms, with attractive patches to mimic the ssDNA sticky ends
(Figure 1A,B). All Y-shapes comprise ten beads: one central bead, six
structural beads arranged in three arms (colored light blue), and three
patch beads (colored red and yellow), one at the end of each arm.
The neighboring beads in each arm are connected by harmonic
springs and are kept approximately linear by an angular potential with
a minimum at 180°; the three arms are equally distributed around the
central bead with position minima at 120° (see below and Figure 1A).
The three sticky beads (patches) provide attractive sites on the outer
surface of the terminal bead of each arm. For simplicity, we define two
patch types, patch A and patch B, which represent two
complementary DNA sequences. The attraction is only enabled for
patches of different types, A−B.

The model is implemented in LAMMPS,35 in which we treat the
fundamental units, mass (mLJ), distance (σLJ), energy (ϵLJ), and the
Boltzmann constant (kB), in reduced units. The reduced time unit is
τLJ = (mLJσLJ

2/ϵLJ)
1/2. The subscript “LJ” stands for Lennard-Jones.

Neighboring beads (and the patches with their host beads) are
connected to each other via a harmonic potential

= −V K r r( )bond bond 0
2 (1)

where r0 is the equilibrium bond distance and Kbond is the stiffness of
the harmonic bond. We set Kbond to 300 ϵLJ/σLJ

2 throughout, only
allowing for small disturbances around the equilibrium distance.34,36

We set r0 to 0.96σLJ for bead−bead (solid black lines in Figure 1A)
and 0.56σLJ for the bead−patch bonds (dashed black lines in Figure
1A). The angle constraint is set by the harmonic potential

α α= −V K ( )angle angle 0
2

(2)

where α0 is the equilibrium angle and Kangle sets the bead/patch chain
rigidity. We use α0

branch = 180° and α0
center = 120° to ensure the basic

geometric configuration of the Y-shapes, and Kangle = 300ϵLJ/rad
2 to

constrain the bending of the chains, following refs 36 and 37.

Figure 1. (A) Schematic of the bead−spring representation of Y-shaped units. (B) (left) Pairwise potentials used in the model. (right) Visual
description of the designed patchy parameters. In panels A and B, the large structural beads are represented in light blue, whereas the small patch
beads are represented in red and yellow. (C) Plots of randomly generated nonoverlapping initial configurations at increasing concentrations in a 30
× 30 × 30σLJ

3 cubic simulation box. The corresponding “per Y-unit” number densities and representative volume fractions are labeled on the
bottom left of each panel.
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Excluded volumes around the structural beads are introduced using
a Weeks−Chandler−Andersen (WCA) potential, which has the same
form as the LJ potential but is truncated at its minimum (which
occurs at 21/6σ ≈ 1.12σ):
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(3)

where ϵ = ϵLJ and σ = σLJ, and V′ is set such that VWCA(r = 1.12σ) = 0.
This potential leads to a repulsive interaction between the structural
arms of the Y-shapes, preventing their overlap and crossing. The
WCA potential is similarly used to provide a short-ranged repulsive
interaction for noncomplementary patch beads, for which the energy
and distance parameters are chosen to be ϵ = ϵLJ and σ = 0.67σLJ, with
the cutoff distance and V′ in eq 3 being reset accordingly.
The attraction between complementary patches (here the A−B

interaction) follows the same form but is truncated at longer range,
leading to a more standard Lennard-Jones potential that has an
attractive part:

σ σ σϵ = ϵ − + ″ ≤V r
r r
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(4)

Here ϵ = 4ϵLJ, σ = 0.2σLJ and V″ are set so that VLJ(r = rcutoff) = 0. We
set rcutoff = 5σLJ, giving a relatively short-ranged attraction mimicking
the ssDNA attractions between complementary sequences. For the
case where there are two distinct patch types, namely, A and B, the
combination of WCA and LJ potentials employed in representing the
patchy ends of the building-block arms effectively prevents multiple
attractions between different ends. For instance, once an A−B pair has
successfully formed, the short-ranged WCA repulsion between A−A
or B−B patch pairs will prevent the formation of a possible three-way
binding. Moreover, the steric hindrance offered by the large repulsive
structural beads further prevents formation of three-way patch
interactions, effectively giving each arm a strict valency of 1, Figure
1B. Assuming a similar combination of short-ranged attraction and
repulsion between complementary and noncomplementary patches,
the binding behavior predicted by our model should be agnostic to
the precise form of the potential employed. Based on the geometry of
an experimental hydrogel,13 we take our length scale unit σLJ to be on
the order of 5 × 10−9 m, while typical bond energies of order 1 kcal/
mol lead to our energy scale unit ϵLJ being on the order of 7 × 10−21 J.
Our units for G′ and G″ referred to later are thus on the order of ϵLJ/
σLJ

3 ≈ 104 Pa.

2.2. Initial Configurations. We first prepare initial configurations
by randomly placing nonoverlapping Y-shaped units into a cubic
simulation box with periodic boundary conditions. Using a Monte
Carlo algorithm, we placed a seed Y-shape at the center of the box;
then a duplicate Y-shape is generated, given a random rotation and
translation and is labeled as type A or B with equal probability; if the
duplication fits in the simulation box and does not overlap with the
existing units, it is retained, otherwise, the duplication is abandoned;
this procedure is run until the number of desired Y-shapes meets a
preset number density. The resulting configuration is then used as the
configurational input for the following simulation. Figure 1C shows
examples of initial configurations for different number densities. The
data presented hereafter represent ensemble averages of 10
realizations.

The cubic simulation box has length 30σLJ, and the number density
is set by varying the number of the Y-shaped units therein. We define
a per-Y-shape volume VY = (πr2 × l) × 3 ≈ 7.3σLJ

3, with r = 0.56σLJ
and l = 2.48σLJ, and characterize the concentration based on the
approximate volume fraction, ϕvol, and the number density, ρ.

2.3. Simulation Details.We perform all coarse-grained molecular
dynamics simulations using Langevin dynamics, in which the
trajectories of each bead are computed according to

λ η= −∇ − +m
t

U
t

t
x

x
xd

d
( )

d
d

( )
2

2 (5)

where x and m (in units mLJ as above) are the position and mass of a
single bead, respectively. U(x) is the bead interaction potential (that
is, the sum of the relevant V terms), the damping parameter λ is large
to approximate overdamped conditions, and η(t) is a noise term from
interactions with a stochastic heat bath via random forces and
dissipative forces. η(t) can be written as η γ=t k T R t( ) 2 ( )B , with
the temperature T ranging from 0.05ϵLJ/kB to 0.7ϵLJ/kB for all the
simulations, and R(t) is a delta-correlated stationary Gaussian process
with zero-mean. We first equilibrate the system at a fixed temperature,
Ti (0.05ϵLJ/kB ≤ Ti ≤ 0.7ϵLJ/kB), starting from the initial
configurations aforementioned. The numerical time step was set to
0.005τLJ, and each of the simulations runs for 5 × 104τLJ to ensure that
equilibrium is reached. We use the number of connected patchy pairs
to characterize the connectivity of the network, shown in Figure 2A.
This quantity increases during equilibration, reaching a plateau whose
value depends on T and the number density ρ. We use the degree of
association θ to evaluate the connectivity of the network, which we
define here as

Figure 2. (A) Illustration of equilibration process quantified by the number of connected pairs for temperatures between 0.1 and 0.75ϵLJ/kB. The
system starts at a randomly generated nonoverlapping initial state (Figure 1C) and eventually reaches its steady state, where the number of
connected pairs reaches a plateau. (B) Degree of association, θ(T), calculated from the averaged number of connected pairs in Figure 2A (masked
in yellow). (C) Hysteresis test for cooling-down and heating-up ramps. All the data are taken on a system with ρ = 1.39σLJ

−3 in the simulation box
= 30 × 30 × 30σLJ

3.
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θ = M
Q N( )/2valence (6)

Here M is the number of connected patchy pairs, N is the total
number of Y-shaped units, and Qvalence is the building-block valency,
which is 3 in our model by construction. As the denominator
represents the maximum number of connected patchy pairs for a
system of N units, θ varies between 0 at high temperatures, where we
have a gas of Y-shapes, and 1 at very low temperatures, when all
possible bonds in the system are formed. As shown in Figure 2A, we
compute values of M time-averaged over the steady state period.
Figure 2B plots θ against temperature T, which we refer to hereafter
as the melting curve. A hysteresis test is run to confirm that the systems
stay in equilibrium. To do so, we first take the equilibrated system at
temperature T = 0.65ϵLJ/kB as the input configuration and then cool it
down to T = 0.6 ϵLJ/kB until another steady state is reached. Likewise,
the final steady state of the (i − 1)th step was chosen to be the
starting point of the ith step, whose steady state serves as the starting
state for step i + 1, and so forth. Such a slow cooling or heating cycle
is similar to hybridization cycles probed by standard UV−vis
spectroscopy measurements, which are used to determine the melting
behavior of a given DNA duplex.38,39 Figure 2C shows cooling and
heating ramps for temperatures between 0.1ϵLJ/kB and 0.65ϵLJ/kB. No
hysteresis is observed, demonstrating that we capture the system’s
equilibrium hybridization behavior.

3. DNA THERMODYNAMICS
Thermodynamic hybridization for short-stranded DNA can be
described by a two-state model. We first assume that an
equimolar mixture of complementary ssDNA (molecules are
noted as A and B) can hybridize into dsDNA (molecules noted
as AB). For ideal mixtures, the equilibrium constant Ka for this
reaction can be written as

β= [ ] [⌀]
[ ] [⌀] [ ] [⌀]

= − Δ ⌀K G
AB /

( A / )( B / )
exp( )a

(7)

where [A], [B], and [AB] refer to the concentration of ssDNA
A, ssDNA B, and dsDNA AB, respectively. [⌀] is the standard
molar state concentration, and β = 1/kBT, where kB is the
Boltzmann constant, and T is the temperature in Kelvin. ΔG⌀

is the standard Gibbs energy for DNA hybridization, which can
be estimated using the SantaLucia thermodynamic model.40

We note that eq 7 strictly applies only for reaction A + B ⇌
AB, where A, B, and AB are free in solution at low densities,
but we find it a useful approximation for our data at moderate
concentrations and temperatures. Many models have been
proposed to predict the phase behavior of associating fluids.41

To transfer these values into simulation parameters, we
furthermore write the DNA concentration in terms of a
number density, and therefore the concentrations of A, B, and
AB are denoted as ρA, ρB, and ρAB, respectively. Starting with
the fully disassociated state, θ = 0, and with an equal mixture of
A and B, we write down the initial number densities as

ρ ρ ρ° = ° =A B (8)

so that at a given temperature T the fraction of base pairs
(bonds) formed can be related to the number densities of AB,
A, and B via

ρ ρθ

ρ ρ ρ θ

=

= = −(1 )

AB

A B (9)

The left-hand term in eq 7 becomes

ρ ρ
ρ ρ

θρ
ρ θ

= =
−

⌀ ⌀
K

(1 )a
AB

A B
2

(10)

with ρ⌀ = 6.022 × 1026 m−3 being the standard number density.
At fixed total volume V and number of building blocks N, the
number density can be written as ρ = N/V. Hence, eq 10 can
be expressed as

= θ
θ

ρ
−

⌀K
N

V
(1 )a 2 (11)

Substituting Ka with eq 11, eq 7 can be rewritten as

θ
θ

ρ β
−

= − Δ⌀ ⌀

N
V G

(1 )
exp( )2 (12)

where the left-hand side purely relates to the number density
and the degree of association, while the right-hand term is
associated with the Gibbs free energy of binding. Hence we
can redefine the reaction constant as

θ
θ

* =
−

K
N(1 )a 2 (13)

and write eq 12 as

β ρ* = − Δ ⌀ ⌀K G Vexp( )/a (14)

For a given ssDNA sequence, ΔG⌀ is constant at constant
temperature.40 Therefore, at fixed temperature T and volume
V, Ka* should remain the same value at equilibrium regardless

Figure 3. (A) The simulation-determined melting curves for samples at number density ρ = 0.28−2.22σLJ−3. (B) Arrhenius plot obtained from
θ(T) as described by eq 15.
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of the initial state. Note, however, that at higher concen-
trations, eq 13 may break down as the activity coefficients of
the various species may differ from unity. Thus, we can test the
validity of our simulation model by calculating eq 13 for
varying N and θ. Further, combining eqs 13 and 14, we can
compute the melting temperature Tm = −ΔG⌀(kB ln(ρ/
2ρ⌀))−1, which is defined as the temperature at which half of all
possible bonds are formed (θ = 1/2).
Figure 3A shows melting curves for systems with number

densities ρ varying from 0.28 to 2.22σLJ
−3. It is important to

note that these densities have been chosen such that the
system does not undergo a macroscopic phase separation into
a DNA-rich gel and a DNA-poor liquid phase but rather is
brought continuously from the liquid to an equilibrium gel
phase when cooled down, as observed in various experimental
works.4,10,13 Again, each data point θ(ρ,T) is averaged over 10
independent realizations following the equilibrating strategy
described above. As expected, θ → 0 at high temperatures for
all concentrations, indicating that all patchy pairs are
dissociated and the system is in a gaseous phase of Y-shapes.
At temperatures well below the system’s Tm, θ tends toward 1,
reflecting the fact that almost all possible bonds have formed
rendering the system a percolating gel. We also observe that
Tm shifts toward higher temperatures, demonstrating that our
simulation model captures the concentration dependence of
Tm.
Another interesting observation following from Figures 2

and 3A is that θ never reaches 1 even at T → 0, meaning that
not all the patches are bonded even well below Tm. This is in
contrast to the thermodynamics of DNA hybridization in
which all complementary ssDNA oligomers will bind to each
other forming nonconnected duplexes.38 We argue that this
behavior is purely due to geometric restrictions imposed by the
angular potentials keeping the three arms in the Y-shapes at a
rather rigid angle of 120° and in plane. This is a rather realistic
representation as we know that dsDNA has a much longer
persistence length than the arm length used in experiments13

and an observation that we confirmed in simulations with the
more detailed OxDNA model. However, our model permits
free rotation between two Y-shapes when bonded, thus
allowing formation of a 3D network with these flat structures.
Furthermore, two bonded arms are not completely stiff but can
form at an angle, which is controlled by the excluded volume of
the outer beads and the patch size, reflecting the flexible linkers
made of nonbinding thymine bases built into our experimental
realization.13 Hence when the network starts to form, some
bonds will be physically not close enough to hybridize, as the
rest of the Y-shapes are connecting to others in the network.
This topological hindrance will lead to θ not reaching full
association. Moreover, one would expect the low-temperature
plateau to decrease even more for lower concentrations as is
demonstrated in Figure 3. The latter also explains the slight
increase of θ in the ρ = 0.28σLJ

−3 curve when heating from T =
0.1. At these low temperatures thermal fluctuations are not
sufficient to locally break a strained bond to rearrange into a
lower free energy configuration. When the temperature goes up
slightly, these strained bonds can dissociate and form new pairs
bringing the system closer to its thermodynamic equilibrium
state.
From the melting curves, we can also extract the binding

enthalpy by rewriting eq 14 in terms of the enthalpy, ΔH, and
entropy, ΔS, of binding:

ρ* = − Δ + Δ ⌀K
H

k T
S Vln /a

B

i
k
jjjjj

y
{
zzzzz (15)

Recasting our melting data in the form of an Arrhenius plot,
Figure 3B, we observe rather weak concentration dependence
of the rate constant at all temperatures, consistent with prior
results.40 The relationship ln(Ka*) ∝ 1/T computed from our
simulation data holds for temperatures above Tm and leads to

− ≈
ρ

Δ
⌀ 3.2H

k VB
. Below this temperature, many-body association

and structural effects lead to deviations from the theory in eq
15, as expected since the linear prediction40 only applies
strictly to hybridization of DNA strands forming linear
duplexes that are free in solution. Nonetheless, these results
further demonstrate that our coarse-grained approach is a good
model for representing tenuous DNA hydrogels of nanostars.

4. STRUCTURAL PROPERTIES
The structural analysis of our DNA hydrogels is guided by the
radial distribution function, g(r), of the central beads of the Y-
shapes, which is given by

∑ ∑
π ρ

δ= ⟨ | − | ⟩
= ≠

g r
r N

r r( )
1

4
( )

i

N

j i

N

ij2
1 (16)

Here N is the total number of the central beads, and ρ is the
averaged number density of the central beads across the whole
system. The sum counts the total number of the central bead
pairs at the distance r. We average this quantity over all
equilibrium configurations.
Figure 4A shows a schematic of the geometry of four Y-

shaped units connected in a chain. They are marked in two
different colors (green and blue) indicating units with different
patch types (patch A and patch B). We define the center points
of the central beads (darker green or darker blue) in a row as
points A1, A2, A3, and A4, and the planes where the
corresponding Y-shaped units stay on as planes P1, P2, P3,
and P4. The sketch follows the assumptions below:

1 All beads of one given Y-shaped unit lie in the same
plane.

2 The arms of two connected patches are aligned along
their principal axis. Figure 4Aa shows the case that they
are not aligned.

3 The three beads in sequence in the same arm are
properly aligned. Figure 4Ab shows the case where they
are unaligned.

4 The plane Pi+1 can rotate freely around the +A Ai i 1 axis.
We assume the rotation or dihedral angle of plane Pi and
Pi+1, follows a uniform distribution.

Our choice of Kbond and Kangle ensure that assumptions 1−3
are satisfied to a good approximation. According to these
assumptions, we estimate the three typical lengths marked as
r1, r2, and r3, which represent the distance of A A1 2, A A2 3 and
A A3 4, respectively, as well as angles φ1 and φ2 that represent
∠A1A2A3 and ∠A1A3A4 (see Figure 4A). We calculate that r1 =
4.96σLJ, and r2 = 8.59σLJ with φ1 at a fixed value of 120°.
Though φ2 is unknown, if we take the uniform distribution for
the rotation angle, the expectation value of r3 can be calculated
as ∼2.37r2, corresponding to 11.5σLJ. Details of the calculation
are given in the Supporting Information S1.
We measured the radial distribution function, g(r), of the

central beads of the systems at various concentrations and
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temperatures, at the equilibrium states acquired before. All
measurements were time-averaged over 106 configurations
from the time series and then over 10 independent realizations
at given (N,T), with T chosen to cover the full melting region.
Figure 4B shows the radial distribution function at ρ = 1.94σLJ

−3

for across a range of T. For all the measurements, g(r) = 0 at r
< 1.12σLJ, which is the cutoff distance of the WCA potential
applied to the central beads. At high temperature, g(r) is
approximately flat, showing a gaseous phase consistent with the
melting temperature results. At low temperature, we obtain
three peaks at distance rp1 = 4.85σLJ, rp2 = 8.60σLJ, and rp3 =

11.84σLJ. This is in good agreement with our theoretical
prediction where ⟨r1⟩ = 4.96σLJ, ⟨r2⟩ = 8.59σLJ and ⟨r3⟩ =
11.76σLJ, demonstrating that in the bulk structure, the
distribution of dihedral angles is roughly uniform. The minor
offset in each of the peaks is mainly due to misalignments that
violate our above assumptions, as shown in Figure 4Aa.
Accordingly, the corresponding value of φ2 is calculated as
120.6° for r3 = 11.76σLJ as above (see eq S3). This shows that
the basic configuration of connected Y-shaped units simply
does not lie in a plane (φ2 = 90° or 150°), which furthermore
illustrates that the system prefers to form a 3D network instead
of a 2D sheet.
The results of the system at low concentration (ρ = 0.28σLJ

−3,
Figure 4C) show an unexpected fourth peak between r1 and r2.
As discussed in detail in Supporting Information S1, r1 is the
shortest characteristic length in the system, and assuming the
planar arrangement in Figure 4A, r2 is the second shortest. We
find that at low concentrations there is a preferred closed ring
structure formed by 4 Y-shaped units (Figure 4D) rather than
an open linear structure (Figure 4A). The diagonal distance
B B1 3 in the ring structure indeed matches the value of rp4. The
ring structure results from considerable bending from the
patchy connection point between to associated arms, and is
only observed for the very dilute case, where it is widespread.
In order to form a 4-membered ring, l1 deviates from its most
probable length, costing extra bending energy; but the gain in
enthalpy by connected patchy pairs in the ring structure
compensates this bending-energy penalty. Supporting Infor-
mation S2 presents the radial distribution functions of the
systems in the absence of shearing. We can clearly see that
peak 4 is only present for ρ = 0.28 and 0.56σLJ

−3, and at higher
concentration, we can only observe 3 typical peaks. This
indicates that at high concentrations equal to and above ρ =
0.83σLJ

−3, the system is densely packed, which frustrates ring
formation; and at low concentrations there is still some empty
space, so some free patches eventually detect close by
counterparts to bind and thus lower the systems’ binding
Gibbs free energy. The structural information of our model can
serve as reference for more complicated designs using, for
example, DNA nanostars in which each sticky end has a
different binding energy. Hence, strict connecting rules can be
used to explore the possibility to form more hierarchical open
networks.

5. RESPONSE TO OSCILLATORY SHEAR

We explored the rheological properties of the hydrogels by
applying a shear flow (with flow in x and gradient in y) to the
networks formed after equilibration (see Figure 5A) and
subsequent cooling to T = 10−7ϵLJ/kB, such that thermal
motion may be neglected. This approach gives a simplified
prediction of how the overall structure responds elastically to
mechanical perturbations; in future work, we will explore the
rheology near to the melting transition.
A Nose−Hoover temperature thermostat accompanied by

the SLLOD equation of motion is employed, ensuring that the
simulation is carried out at fixed volume, V, and temperature,
T. Using the SLLOD equation of motion, we subtract the
streaming velocity of the particles caused by the reshaping of
the simulation box while shearing.42,43

The positions and velocities of the particles are remapped
every 0.001τLJ for transient shear and 0.0002τLJ for oscillatory
flow to eliminate integration errors in the latter case (Figure

Figure 4. (A) Schematic of the typical configuration of four Y-shaped
units associated in a row, drawn in blue and green, respectively, to
indicate different patchy types. A1, A2, A3, and A4 denote the center
point of the center beads (darker color). (B,C) Central-bead radial
distribution function g(r) for ρ = 1.94 and 0.28σLJ

−3 systems. (D)
Snapshot of the ring structure for four Y-shaped units.
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S4, Supporting Information S3). To achieve oscillatory shear,
we impose a time-dependent strain and rate of the strain given
by eq 17

γ γ ω

γ γ ω ω

=

̇ =

t t

t t

( ) sin( )

( ) cos( )

0

0 (17)

where γ0 is the amplitude of the shear deformation, and ω is
the shearing frequency. Assuming that we remain in the linear
viscoelastic regime, the resulting shear stress (in the xy
direction) can be written as

σ σ ω δ= +t t( ) sin( )0 (18)

Here σ0 is the amplitude of the shear stress, and δ is the phase
shift of the stress response due to the different elastic and
viscous contributions of the material at various frequencies.
The storage G′(ω) modulus can be obtained according to eq
19:

σ
γ

δ′=G sin( )0

0 (19)

We first apply an oscillatory shear deformation with
amplitude γ0 at angular frequency ω, acquiring time series of
the resulting shear stress, σ(t), from the simulation. The
measured shear stress σ(t) shows a sinusoidal shape with a
phase shift δ from the input shear strain as expected. A
typically measured stress response is illustrated in Figure 5B.
We average σ(t) for every 3 cycles and then compute σ0 and δ
(eq 18), before using eq 19 to obtain G′. Results for the
storage modulus G′(ω) are presented in Figure 5C, for γ0 =
0.01 and γ0 = 0.1 across a range of number densities. We also
calculated the viscoelastic properties using the stress
autocorrelation function as an input to the Green−Kubo

relation, which closely matches that obtained by mechanical
spectroscopy (see Supporting Information S3).
Our results show that G′(ω) increases with the system

density, which is not surprising because the elasticity is related
to the number of harmonic bonds in the system. Hence the
more connected Y-shapes are present in the system, the higher
is the elasticity. We can clearly see that at fixed angular
frequency ω, G′(ω) increases roughly linearly with the density
of the system as expected. For frequencies large relative to the
characteristic time scale of the simulation (that is, ω > 1 rad/
τLJ), we find a small phase angle throughout, indicative of a
linear elastic response irrespective of the straining amplitude.
For smaller frequencies we find that G′(ω) drops off,
indicating that structural relaxation leads to dissipation and
thus a viscous contribution to the rheology. This drop off
occurs at an approximately fixed value of the characteristic
shear rate γ0ω. Indeed, under linear strain ramps (that is, γ(t) =
γ̇t, see Figure S3 in Supporting Information S3), the stress
increase is linear in strain, while γ̇ = τLJ

−1 and becomes
sublinear for smaller shear rates. In the following, we report
results measured using γ0 = 0.1, which gives significantly better
statistics and a wider range of accessible angular frequencies.
Figure 5E shows shear moduli calculated based on different

potential contributions (pair, bond, and angle) at number
density ρ = 1.4σLJ

−3. Other than at extremely low frequency,
the contributions G′angle and G′bond are nearly independent of
frequency ω, which is in line with expectation as the potentials
are harmonic. In contrast, the G′pair is increasing with
frequency ω, meaning the pair interactions become more
important over short time scales. Since a single Y-shaped unit
is composed of ten beads linked by bonds and shaped by angle
constraints, it is not surprising that G′pair from patchy
interactions only show lower values than G′bond and G′angle.
We finally demonstrate the control over the material’s

rheological properties that we can exert by tuning the patchy

Figure 5. (A) Snapshots of the fully associated system (θ→ 1) in the unsheared (left) and sheared state (right). (B) Illustration of strain and stress
time series for three cycles. (C) Plot of storage modulus, G′(ω), at strain amplitudes of 10% (solid lines with star markers) and 1% (dashed lines
with triangle markers). The color scale represents the number density of the system. (D) Pair contribution to the storage modulus G′(ω), with
active patches at 1, 0.67, 0.33, and 0 (γ0 = 10%). (E) Separated pair, bond, and angle contributions and the overall stress to the storage modulus,
G′(ω) (γ0 = 10%).
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interactions. As an illustrative example, we modify the
complementarity simply by “switching off” some of the patches
at random (i.e., by switching them to being universally
repulsive, see Figure 1B): thus, the proportion of patches that
remain active is Ψp. As shown in Figure 5D, G′pair shifts
progressively downward as patches are deactivated. It is clearly
seen that while there are still patchy particles present, the
frequency-dependent elastic modulus response resembles the
same shape as when fully connected, presenting a plateau at
low frequencies, which shows a network feature. However,
when all the patchy interactions are disabled, the low-
frequency plateau disappears at low frequencies, due to the
loss of the connectivity of the bulk system. It also indicates that
if we change the binding rules slightly, we can achieve good
control over the pair contribution to σ(t). This shows that the
chemistry of DNA hydrogels allows us to manipulate their
rheology in a way that is not possible (or at least more
difficult) with conventional polymeric materials.

6. CONCLUSION
We have introduced a coarse-grained model for a binary DNA
hydrogel system, made of rigid double-stranded Y-shaped
DNA nanostars with patchy ends. We demonstrated that the
melting behavior of the model matches a simplified DNA
thermodynamic theory well. We also studied the structural
properties predicted by the model at various concentrations
and temperatures, proving the three-dimensional structural
information on the system. We find that the network structure
largely conforms to a uniform distribution of dihedral angles.
Interestingly, at low temperatures, we find locally higher order
in the form of ring structures, which is difficult to verify
experimentally. Conducting transient and oscillatory rheolog-
ical studies, we also gained further insight into the relation
between the macroscopic elasticity of such a DNA hydrogel
and the local structure. The storage modulus results show the
elasticity of the system when fully connected, but due to the
zero-temperature condition, all the frictional interactions are
switched off and the loss modulus is actually not reliable
(therefore we do not show it), demonstrating the limitation of
the model, which we hope to resolve in the future. For
example, we could calculate the center-of-mass stress instead of
per-atom stress, and the former should be able to screen out
the intramolecular interactions and therefore amplify the
intermolecular interactions mainly caused by the ssDNA sticky
ends (represented as patchy interaction here). Nevertheless,
our coarse-grained model is robust enough to capture the
overall system network formation and scaling of the elasticity
with the number of bonds per volume. Moreover, it gives
better insight into local structural arrangements that cannot be
directly tested in experiments.
Furthermore, our model is computationally efficient

compared to current DNA simulation models30−32 as we
neglect the binding specificity using patch interactions with
given interaction strength. This is preferable for predicting the
structural and dynamic properties of larger scale DNA self-
assembly systems with repeating building blocks, which is
normally very costly if the per-nucleotide interaction is
considered. The key parameters for the building blocks (i.e.,
angles, bonds, geometry, etc.) can be optimized by matching
with lower-level coarse-grain simulations such as OxDNA
model providing quantitative predictions for real materials.
Hence, this model can be used in the design of DNA networks
with more interesting viscoelastic properties in the future.
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