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ABSTRACT: The structure and vibrational density of states (VDOS) of
polymer glasses are investigated using numerical simulations based on the
classical Kremer−Grest bead−spring model. We focus on the roles of chain
length and bending stiffness, the latter being set by imposing three-body
angular potentials along chain backbones. Upon increasing the chain length
and bending stiffness, structural reorganization leads to volumetric expansion
of the material and buildup of internal stresses. The VDOS has two dominant
bands: a low-frequency one corresponding to inter- and intrachain nonbonding
interactions and a high-frequency one corresponding principally to vibrations
of bonded beads that constitute skeletal chain backbones. Upon increasing the
steepness of the angular potential, vibrational modes associated with chain
bending gradually move from the low-frequency to the high-frequency band.
This redistribution of modes is reflected in a reduction of the so-called Boson
peak upon increasing chain stiffness. Remarkably, the finer structure and the
peaks of the high-frequency band, and their variations with stiffness, can, for short chains, be explained using an analytical
solution derived for a model triatomic molecule. For longer chains, the qualitative evolution of the VDOS with chain stiffness is
similar, although the distinct peaks observed for short chains become increasingly smoothed out. Our findings can be used to
guide a systematic approach to interpretation of Brillouin and Raman scattering spectra of glassy polymers in future work, with
applications in polymer processing diagnostics.

I. INTRODUCTION

Raman spectroscopy can detect vibrational and electronic
properties of materials over a broad range of temperatures and
pressures and is a well-established and widely used non-
destructive measurement technique.1,2 Comprehensive predic-
tive models for Raman and Brillouin spectra are important for
many applications involving amorphous carbon-based materials,
from nanotechnology to polymer reaction engineering.3−6 Of
particular interest is emulsion polymerization,7 a common
manufacturing route for many rubbers and plastics. The
complexity of this process hinders characterization of product
quality by traditional methods,8 and it is increasingly being
probed by Raman spectroscopy.
The vibrational density of states (VDOS) of solids is the

main input for the prediction of the Raman and Brillouin
scattering spectra. For glasses, the Shuker−Gammon formula
gives the Raman intensity as a function of the VDOS as9
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where n(ω) + 1 is the Bose−Einstein occupation factor, D(ω)
is the VDOS, and C(ω) is the photon−phonon coupling
coefficient. Since C(ω) is a simple function of frequency,
possibly quadratic,10 it is clear that most of the structure of the
Raman spectrum is directly related to the D(ω) spectrum.
While the VDOS of crystals can be obtained by a
straightforward exercise in Fourier analysis, the same problem

for amorphous solids, such as glasses, is analytically intractable
and presents a rich phenomenology. This phenomenology is
yet more complex when the building blocks are polymer chains,
which, in the disordered glassy state, can have a considerably
larger variety of conformations.
There have been numerous studies into the vibrational

properties of polymeric systems,11,12 starting from theoretical
determinations of the single-chain backbone vibrational spectra
in seminal works by Kirkwood13 and Pitzer,14 followed by the
powerful combination of Wilson’s GF method with group
theory by Higgs.15 These methods are not applicable to
polymer glasses, however, where the chain conformation does
not possess any periodicity that can allow the application of
group theoretical methods. Further advances in numerical
techniques have focused on reducing the computational time of
the diagonalization problem.16

While signatures of individual monomers and their
constituent bonds are very well characterized in the vibrational
bands of highest energy in the spectrum, the relation between
coarse-grained polymer structures and vibrational properties in
the low frequency part of the spectrum is relatively unexplored.
In the contemporary literature, the use of coarse-grained
systems as model materials for studying the vibrational
properties of amorphous solids has become a standard
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approach.17−20 In this direction, coarse-grained simulations
based on the classical Kremer−Grest model21 for bead−spring
polymers can enable direct calculation of the VDOS. With a
suitable procedure for coupling the VDOS to the Raman
spectra,18 such numerical approaches will be able to offer a
systematic approach to linking vibrational properties to coarse-
grained structures for polymers of arbitrary length and
monomer−monomer interactions.
Here, we report the structural properties and the VDOS for

coarse-grained polymer glasses as functions of the chain length
and the chain bending stiffness. We identify clear trends in the
vibrational spectra that derive from microstructural rearrange-
ments as the chain length and chain stiffness increase. Through
these quantities, it will be possible in future work to make
predictions about how the experimentally observed vibrational
spectra will evolve during the course of an emulsion
polymerization, for example, guiding the development of
noninvasive industrial process monitoring techniques. This
work can further serve as the basis for quantitative under-
standing and modeling of Raman and Brillouin spectra at the
atomistic level, particularly by coupling to atomistic simulation
techniques.
In the following, we first describe the numerical method used

and then go on to study the structural and volumetric changes
as functions of varying chain length and stiffness. We then
analyze the VDOS as a function of chain length and stiffness,
providing a mechanistic interpretation informed by an
analytical argument.

II. SIMULATION DETAILS
Our model uses a coarse-graining approach that treats polymer
chains as linear series of monomer “beads” on an elastic string.
In a harmonic approximation, monomeric scale physics
dominates the region of the VDOS of interest to this work
and indeed governs the viscoelastic response of the material.22

For each bead in the system we use LAMMPS23 to solve the
Langevin equation
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for uniform beads of mass m and velocity v, coefficient of
friction m/ξ, and random forces f B(t) satisfying ⟨f B(t)f B(t′)⟩ =
2mkBTδ(t − t′)/ξ. Beads interact with each other through a
potential U, given by the Kremer−Grest model21 with the
addition of angular potentials that impose bending constraints
on triplets of three consecutive beads along the chain
backbones. Overall, the model for the potential energy U
comprises three terms: [i] A truncated and shifted Lennard-
Jones (LJ) potential of form
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acting between all bead pairs within a cutoff range rc = 2.5σ,
where r is the bead−bead separation, σ is the zero-crossing
distance for the potential, and the prefactor εLJ sets the LJ

energy scale. Setting = 0
U r

r

d ( )

d
LJ leads to an energy minimum

and corresponding LJ rest position at 21/6σ. The LJ potential
effectively acts as an excluded volume, as illustrated in Figure 1.
[ii] A finitely extensible nonlinear elastic (FENE) potential
acting between sequential bead pairs along each linear chain
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where R0 is the maximum FENE bond length and εFENE is the
bonding energy scale. Adjacent beads along polymer chains
have an overall interaction that represents the sum of the
Lennard-Jones and FENE potentials, giving a rest position for
bonded beads (obtained by setting (d/dr)(ULJ(r) + UFENE(r))
= 0) as ≈0.96σ for the parameters used throughout this work.
This discrepancy relative to the LJ rest length gives sufficient
bidispersity to suppress crystallization throughout, and we set
εFENE/εLJ = 30. [iii] An energy associated with chain bending,
given by

θ ε θ θ= − −U ( ) [1 cos( )]bend bend 0 (5)

for energy scale εbend. The angle θ is formed between three
consecutive beads (a triplet) along the length of the linear
chains (Figure 1), and the characteristic rest angle is θ0 =
109.5°. The resistance to bending of the polymer chains is thus
set by εbend, which is related to the persistence length lp of the
chain via the standard relation lp = εbendσ/kBT.
The relative importance of the three potentials in setting the

overall structure and dynamics of the polymers is determined
by their prefactors εLJ, εFENE, and εbend. Since each of the
potentials has a different form, it is difficult to compare the
values of these prefactors directly. In order to render the
different interaction strengths more comparable, therefore, we
find it convenient to take a harmonic approximation about the
rest position of each potential and consider the resulting spring
constants κ. We find κLJ ≈ 57.1εLJ/σ

2, κFENE ≈ 32.7εFENE/σ
2,

and κbend = εbend/σ
2. To characterize our systems, we use two

control parameters κbend/κLJ and κbend/κFENE that compare the
bending stiffness to the LJ and FENE bond strength,
respectively. The strength of FENE bonds is fixed such that
κFENE/κLJ ≈ 17.2 throughout (recalling that εFENE/εLJ = 30). We
explore bending stiffnesses in the range κbend/κLJ = 0 → 20. A
sketch of two interacting polymer chains is shown in Figure 1,
highlighting the angle θ on which Ubend acts as well as the rest
positions for LJ (21/6σ) and FENE (0.96σ) interactions.
With reference to fundamental units of mass μ, length d, and

energy ϵ, we set σ = 1, R0 = 1.5, m = 1, and εLJ = 1, giving a time

unit of τ σ ε= m /2
LJ , and we set ξ = 100τ. The system

volume V has units d3. A dissipative time scale emerges as

Figure 1. Sketch of simulated polymer system showing two interacting
chains (blue and pink). Shown are the LJ rest position of 21/6σ
between nonbonded beads, the FENE rest position of 0.96σ between
beads along a single linear chain, and the angle θ formed between
three consecutive beads (forming a triplet) along chains.
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mσ2/ξεLJ, and a thermal time scale emerges as mσ2/ξkBT
(where kB ≔ 1 [units energy/temperature]). The state of our
system, i.e., whether it is in the melt or glassy state, is simply
given by the ratio of these time scales, as T* = kBT/εLJ. Two
additional rescaled temperatures could be defined using εFENE
or εbend as the reference energy, but we find that the most
convenient description and characterization of the transition to
glassy behavior is obtained using εLJ.
Initial loose polymer conformations are generated within a

cubic periodic domain using a nonoverlapping random-walk
algorithm. We use a system of Np = 5 × 103 beads, in chains of
uniform length L, which we vary from 2 to 50. The value of Np
is chosen following the entanglement criteria of ref 24, and
moreover we demonstrate the sensitivity to Np in Figure 9,
bottom left panel. For each value of L we generate five
realizations of the system for the purposes of ensemble
averaging. We comment on the variation between realizations
elsewhere.22 The system is first equilibrated in a melted state at
T* = 1.2, maintaining zero external pressure using a Nose−
Hoover barostat with a damping parameter of 100τ. The system
is subsequently cooled to T* = 0.1 by decreasing T* at rate 1/
τc, with τ τ= 10c

5 . Since T* = 0.1 is below the glass transition
for all of the polymers considered in this work, this cooling
procedure allows us to measure Tg. For determining the
vibrational properties, though, it is necessary to go to lower
temperatures. To reach temperatures closer to T* = 0, we
subsequently relax the system further by applying the gradient
method to the simulation configuration at constant volume. We
used the fluctuation of net forces acting on beads ⟨f i

2⟩ ∼ T* as
a measure for temperature. By comparing the forces with the
reference value from T* = 0.1, we get the temperature of the
relaxed system configuration by T* = 0.1⟨f i

2⟩/⟨f i
2(T*=0.1)⟩. By

this protocol, a target temperature of T* = 10−4 was reached for
each realization. Further decreasing the temperature does not
lead to changes in the VDOS or structural quantities.

III. STRUCTURE OF COARSE-GRAINED POLYMER
GLASSES

III.A. Changes in Tg with Chain Length and Stiffness.
Ensuring that the external pressure remains zero, the system
undergoes a decrease in volume V as it is cooled (Figure 2). In
Figure 2a, a change of gradient is identified at T* = Tg*,
corresponding to the glass transition.25,26 As reported in Figure
2a,b, the model predicts that Tg* increases with the chain
length,27 consistent with the classical free-volume result of
Flory and Fox28 and with the more recent criterion based on
generalized Born melting for glasses.29 This is the case for both
fully flexible (κbend/κLJ = 0) and very stiff (κbend/κLJ = 17.5)
chains. As expected,30 we further find that Tg* increases with
κbend/κLJ (Figure 2c,d), with apparent limiting values occurring
for κbend/κLJ → 0 and κbend/κLJ > 4. The increase is significantly
more pronounced as L is increased. We report the increase of
Tg* with κbend/κLJ and provide further details in our earlier
article.31

We find that Tg* varies between ≈0.4 and ≈0.9 for all values
of L and κbend/κLJ and that in all cases the system is well within
the glassy state at T* = 0.1. When we increase κbend/κLJ above
20 (corresponding to κbend/κFENE > 1), we find that the angular
potentials are large enough to stretch the FENE bonds beyond
their maximum length R0 at which point the chains break and
the simulation becomes unstable due to the divergence of the
ln(1 − (r/R0)

2) term in the FENE expression. We therefore

treat this as a limiting value of κbend/κLJ and do not explore
stiffer chains.

III.B. Changes in Density with Chain Length and Chain
Stiffness. It is evident from Figure 2 that the value of V/Npσ

3

at T* = 0.1 is sensitive to both chain stiffness and length. In our
earlier paper,31 we showed that differences in V/Npσ

3 persist
even at fixed T*/Tg* (rather than fixed T*), demonstrating that
there are robust changes in density as chain bending and length
are varied. We present in Figure 3 a contour map of polymer
glass density, quantified as the number of beads per unit
volume Np/V, rescaled by the characteristic bead excluded
volume σ3, measured at T* = 0.1. Since our subsequent
minimization protocol conserves volume, the map also applies

Figure 2. Volume−temperature curves for polymer cooling as
functions of chain length and chain stiffness. The volume is rescaled
with bead number Np and size σ

3. (a) Increasing chain length for κbend/
κLJ = 0. Highlighted is the glass transition temperature Tg*, where the
polymer transitions from a melt to a glassy state. (b) Increasing chain
length for κbend/κLJ = 17.5. (c) Increasing chain stiffness for chain
length 3. (d) Increasing chain stiffness for chain length 50. Colors in
(a) and (b) refer, from blue to red, to chain lengths 2, 3, 4, 5, 20, and
50. Colors in (c) and (d) refer, from blue to red, to chain stiffnesses
κbend/κLJ = 0.0175, 0.0525, 0.175, 0.525, 1.75, 5.25, and 17.5.

Figure 3. Contour plot of polymer glass density (enumerated as Npσ
3/

V at kBT/εLJ = 0.1) as functions of chain length and chain stiffness. We
note that increasing chain length leads to compaction for flexible
chains but expansion for stiff chains.
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at T* = 10−4. With respect to the density for L = 3, it is
interesting to note that increasing chain length leads to
compaction for flexible chains but expansion for stiff chains.
For very flexible chains (κbend/κLJ ≪ 1), the key effect of

increasing chain length is to move bead pairs from the LJ rest
position at 21/6σ to the FENE rest position at 0.96σ, while
maintaining a purely central-force system with minimal explicit
bending constraints. As a result, the density increases with
increasing chain length as illustrated in Figure 3 and similarly
by the decreasing value of V/Npσ

3 at T* = 0.1 in Figure 2a.
For less flexible chains, the roles of stiffness and chain length

are more subtle. In order to achieve mechanical stability at, and
below, Tg*, approximately monodisperse beads in central force
networks require six pairwise interactions to fully constrain
their translational degrees of freedom, in agreement with
Maxwell’s criterion for isostaticity. As bending stiffness is
increased, the translational motions of beads along chain
backbones become increasingly constrained by three (and
many)-body interactions. This means that as κbend/κLJ increases,
the translational degrees of freedom of individual beads can be
fully constrained with fewer than six pairwise interactions per
bead.29,32 We quantified this effect using the coordination
number Z in another contribution.31 Since we operate at fixed
external pressure, this lower coordination further implies that
marginal stability can be achieved at lower density as stiffness is
increased. This is the result observed in Figure 3 for L > 3 and
indeed in Figure 2c,d (inverse density V/Npσ

3 at T* = 0.1
increases with increasing κbend/κLJ), with the effect becoming
more evident for longer chains, which permit many-body
interactions.
As we deviate from the short chain limit, it is interesting to

note that there is a continuous transition from very weak
dependence to rather strong dependence on stiffness with
increasing chain length. This can be interpreted by considering
again the coordination argument above, which argued that
bending constraints impose many-body effects along chains
such that marginal stability can be achieved with fewer pairwise
contacts than otherwise. For shorter chains, the maximum
number of beads than can be correlated with one another in
this way is small, so many-body interactions only have a weak
contribution to the overall stability of the material. As such,
when the stiffness is increased in short chains where there are
not many angular potentials defined (in relative terms), most of
the interactions remain as central force and as such the density
varies only weakly. Conversely, for long chains, the increased
stiffness allows many-body bending constraints to affect a
higher proportion of the overall number of interactions, so the
density decrease becomes exaggerated. Interestingly, at L = 50,
the variation of density with chain stiffness is not linear, but
rather it has an inflection around κbend/κLJ ≈ 1.
III.C. Deviations from Rest Positions and the Resulting

Internal Stresses. It is likely that steric constraints will play a
role within our densely packed systems, meaning that beads will
not typically be situated at their minima with respect to all three
potentials (LJ, FENE, bending) even when the temperature is
considerably less than Tg*. Such deviations from minima will
lead naturally to internal stresses in the material. As chain
length and bending stiffness are increased, it is likely that the
extent to which beads deviate from their respective rest
positions, and hence the total internal stress in the material, will
change. It was shown recently33 that properly accounting for
internal stresses in jammed emulsions is crucial to correctly
obtaining the VDOS. Here we give a description of the source

of internal stresses, which will help to guide our interpretation
of the VDOS below.
To illustrate the deviation of beads from their rest positions,

we present in Figure 4 an example bead−bead radial

distribution function g(r) and angular distribution function
p(θ) for chains with L = 10 and κbend/κLJ = 0.175 in the
minimized system configuration, highlighting the specified rest
positions for LJ, FENE, and bending potentials as well as the LJ
cutoff distance. There is a clear deviation from each of the rest
positions. In particular, LJ-bonded beads lie, on average, closer
than their rest positions dictate, while FENE bonds are typically
stretched (Figure 4a). Although the FENE bonds have a
steeper potential than their LJ counterparts, the LJ bonds are
far more widespread in the system, being both longer range and
interchain. Thus, it is likely that the mean positions of FENE-
bonded pairs can be dictated by the LJ bonds in their
immediate vicinity. Deviations of both LJ and FENE naturally
lead locally to internal stresses and thus to a net storage of
potential energy in the system.
Furthermore, Figure 4b shows peaks in the angular

distribution at around θ = 70° and θ = 120° that are not
related to the potential minimum at θ0 = 109.5°. Rather,
implicit angular constraints that generate energetically favorable
chain conformations arise in the material due to the LJ and
FENE potentials. We illustrate such conformations in Figures
4c,d. These conformations are far from their bending potential
minima, thus accumulating additional potential energy in the
system. The broad p(θ) distribution steadily narrows as the
value of κbend/κLJ is increased, as we showed in an earlier
article.31

To quantify the potential energy in the system, we compute
the mean displacement of beads from their rest positions as a
function of chain length and stiffness. At any time, there are NLJ
Lennard-Jones interactions (including those up to the cutoff rc

Figure 4. (a) Radial distribution function g(r) and (b) angular
distribution function p(θ) for chains with L = 10 and κbend/κLJ = 0.175.
Shown are the FENE rest position, LJ rest position, and the resting
angle as well as the force cutoff beyond which we do not compute LJ
interactions. (c) and (d) illustrate the implicit angular resting positions
that arise due to two different configurations of the excluded volumes
of beads.
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= 2.5σ), which we label with the index α (so the bead−bead
distance is rα). We take the average magnitude of the deviation
of rα from the LJ rest position. Analogous calculations are done
for FENE interactions and bending interactions. Overall, we

compu t e σ∑ | − |α αr 2
N

1 1/6
LJ

, σ∑ | − |β βr 0.96
N

1

FENE
, a nd

θ θ∑ | − |γ γN
1

0
bend

. The results are given in Figure 5a−c for LJ,

FENE, and bending interactions, respectively.
As bending stiffness κbend/κLJ increases, the chains increas-

ingly conform to θ0 independently of chain length (Figure 5c).
This requires changes in structure that must be accommodated
by small additional deviations of LJ and FENE bonds from their
resting positions. For LJ interactions (Figure 5a) the deviations
increase steadily with stiffness. This effect is more marked for
long chains, which have a larger number of bending constraints
per bead. For FENE bonds (Figure 5b), meanwhile, the
behavior is more subtle. The primary effect is similar to that
observed for LJ interactions: increasing bending stiffness
increases the deviation of FENE bonds from their rest
positions. For short and flexible chains, however, there is an
anomalous secondary effect: for κbend/κLJ < 1, the deviation of
FENE bonds increases with decreasing chain length. As
discussed above, the ubiquity of LJ interactions means they
may dictate the positions of FENE bonded beads regardless of
their considerably weaker potential. As chain length decreases,
the average number of FENE bonds per bead decreases
steadily, while the number of LJ interactions per bead remains
unchanged. This means that LJ interactions can have more
influence on FENE positions as chain length decreases, thus
leading to additional stretching. This effect is stronger for
flexible chains, which do not have the additional effect of
angular constraints.
We further show that deviations from rest positions lead

directly to potential energy being stored in the system in each

case. The potential energy is calculated by summing ULJ, UFENE,
and Ubend over every interaction in the minimized system
configuration and is given as a function of chain length and
stiffness in Figure 5d. The main effect is that increasing chain
length introduces more FENE bonds into the system, whose
individual deviations of ∼0.02σ (Figure 5b) contribute
significantly to increasing stored potential energy. There is an
additional effect whereby stored potential energy grows with
increasing stiffness. This has contributions from LJ and FENE,
in line with their deviations shown in Figures 5a,b, and also
from bending potentials. Although the triplet conformations
increasingly conform to their rest positions with increasing
stiffness, remaining deviations become progressively more
costly as κbend/κLJ increases, leading to a contribution to the
stored potenital energy.

III.D. Overview of Structural Changes. The evolution of
density and internal stresses (as parametrized by deviations
from interaction energy minima) are strong functions of the
bending stiffness and chain length. Upon increasing the
stiffness, all angles between adjacent bonds tend to approach
the minimum of the bending potential at θ0. However, this
effect competes with the tendency of neighboring beads to stay
close to the minima of LJ and FENE interactions. This
competition leads to an increase of potential energy due to
pairs of beads drifting subtly away from LJ and FENE minima.
The effect of increasing the chain length is to insert more
FENE bonds into the system. Since these are typically ∼0.02σ
from their resting positions, this leads to a sharp increase in
stored potential energy. We have checked that increasing chain
length further above L = 50 does not bring any further
evolution, and we can safely conclude that chain length has a
non-negligible effect only for L < 50.

Figure 5. Structural origin of internal stresses in the polymer glasses as a function of chain length and stiffness: (a) mean deviation of LJ pairs from
their rest position; (b) mean deviation of FENE bonds from their rest position; (c) mean deviation of angles from their rest position, showing
approximate independence of chain length; (d) total potential energy per unit volume, equivalent to the internal stress of the material.
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IV. VIBRATIONAL DENSITY OF STATES
We next investigate the connection between chain length,
angular potential, and the VDOS. Importantly, changes in the
spectrum due to increasing the angular potential are related not
only to the associated increase in angular forces but also to the
structural changes that arise as discussed above. In what follows,
we first outline our formalism for obtaining the VDOS,
including a description of how we decompose it into various
contributions. We then give an overview of the generic features
of the VDOS of polymeric glasses, before focusing specifically
on the behavior with respect to chain length and bending
stiffness.
IV.A. Formalism for Obtaining the VDOS. Since we

prepared the glasses well below Tg*, we can ignore any effects of
thermal noise and hence work in the harmonic approximation,
where the displacements of the system around energy minima
are small. The equation of motion can therefore be written with
the Hessian H of our system:

̈ = −mu Hu (6)

Here m is the mass of the constituent beads of our polymer
chains (which we take to be uniform) and u is the displacement
field. We can convert this equation into an eigenvalue problem
by performing a Fourier transform, which gives

ω ̂ = ̂m u uH2 (7)

where ω are the eigenfrequencies of our system and u ̂ are the
eigenvectors (displacement fields). Arranging the eigenfrequen-
cies in a normalized histogram gives us the vibrational density
of states (VDOS) of our system. To obtain ω, we first need the
explicit expressions for the elements of the Hessian, after which
we can solve eq 7 numerically. The elements of the Hessian are
defined as second derivatives of the potential energy of the
system:
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Here, represents the overall potential, consisting of the sum
of ULJ, UFENE, and Ubend, z is a generic argument, and a and b
label the Cartesian components. As one can see, the entries in
the Hessian consist of two parts: one proportional to the spring
constant c between two beads and another one proportional to
the tension t (precise definitions are given in Appendix A). The
latter contribution vanishes if all bonds are at their energy
minimum at the same time. In reality, this would require perfect
crystallization of the system, which is often not possible or
would take a very long time. In this case, crystallization is
inhibited even for fully flexible chains by the disparity in rest
positions of LJ and FENE interactions.
Another source of tension is thermal noise, though this is not

addressed in the present work since we work sufficiently below
Tg*. The main source of tension terms in our simulations is thus
the angular potential and its competition with the LJ and FENE
potentials, as discussed above. This combination of potentials
creates two competing effects: the stronger angular potential
forces all angles closer to the rest angle θ0, but also increases the

strength of the tension for a given deviation, and generates
additional tensions due to increased deviations from the LJ and
FENE minima. Including them in the Hessian, we can now
solve eq 7 and get the eigenvalues ω2 and displacement fields

u ̂(ω). The units of ω are ε σm/LJ
2 .

A particularly instructive quantity is the ratio at which
different vibration patterns contribute at certain frequencies.17

We are especially interested in the internal-coordinate
directions shown in Figure 6. These motions correspond to

out-of-plane “rocking” motions (red, aî,1), perpendicular (to the

chain) motions that remain in the plane of the chain (blue, aî,2),

and “along-chain” motions (green, a ̂i,3). To obtain each of these

contributions separately, we project the displacement vector

u ̂i(ω) of each bead onto the orthogonal basis formed by the

three unit vectors (aî,1, a ̂i,2, aî,3) (see Figure 6), generating a new

representation vî(ω):

Figure 6. (a) Important motions of bead i along the polymer chains.
a ̂i,1, red circle, denotes the motion perpendicular to the plane spanned
by the two bonds (black lines) also referred to as rocking motion. The
other two planar motions are perpendicular (a ̂i,2, blue arrows) and
along the chain (a ̂i,3, green arrows). (b) Example VDOS for chain
length L = 50 and stiffness κbend/κLJ = 0.525, displaying a lower-
frequency band corresponding to collective LJ-dominated motions,
and a higher-frequency band corresponding to skeletal motions, which
include FENE bonds. The dashed line (red) represents rocking
motions, the dashed-dotted (blue) line represents perpendicular
skeletal motions, and the dotted line (green) represents along-chain
skeletal motions. The negative part of the frequency axis refers to the
imaginary eigenfrequencies derived from negative eigenvalues. It is
shown as negative for convenience here and below.
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ω( )j is a weight function which measures the contribution of

each of the three different motions discussed above, from which
we get a partial VDOS showing the contribution of each of
these three motions to the full VDOS. This decomposition
provides insights into the dynamics of the chains at different
frequencies in the spectrum.

IV.B. Vibrational Spectrum: Results and Interpreta-
tion. 1. Collective Lennard-Jones “Sea” and Higher
Frequency Skeletal Modes. An example VDOS is given in
Figure 6, for chain length L = 50 and stiffness κbend/κLJ = 0.525,
while in Figure 9 we present the VDOS across the full range of

Figure 7. VDOS for L = 3 with (a) κbend/κFENE = 0.001; (c) κbend/κFENE = 0.306; (e) κbend/κFENE = 1.019. (b) Analytical solution for the three
nonzero eigenfrequencies of a chain with L = 3 (pictured in inset) as a function of κbend/κFENE (see Appendix B). (d, f) Contribution weights for
along-chain and perpedicular motion for ω1 and ω3 from the analytical model. The weights of ω2 are inverted compared to ω3. Vertical dashed lines
in (b, d, f) indicate sample values of κbend/κFENE for which the VDOS are shown in (a, c, e). As we can, see the qualitative behavior of our simulated
systems with L = 3 is well-captured by the analytical model, in terms of both frequency and motion weight evolution. The frequencies measured by
simulation differ slightly in magnitude due to the large number of LJ interactions that collectively push the bond energy, and therefore frequency, to
higher values.
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stiffnesses and chain lengths. A common feature of this work is
a distinct splitting of the VDOS into low- and high-frequency
parts, particularly evident for low bending stiffness. The low-
frequency part occupies the interval ω = [0, ∼40], while the
high-frequency part extends up to ω ≈ 70 in most cases and up
to ω ≈ 100 when κbend/κFENE ≳ 1. The low- and high-frequency
bands are separated by a trough, whose depth and precise
location in ω are subtly dependent on κbend/κLJ. This generic
splitting of the VDOS into two bands was shown previously by
Jain and de Pablo,34 who considered fully flexible chains only.
Moreover, experimental works in polymerization have demon-
strated that during periods of chain growth a single peak in the
Raman intensity transforms into two peaks.35,36 These may be
related to the two distinct bands predicted here, though a
quantitative link between the Raman spectra and the VDOS
reported here remains challenging and is the subject of ongoing
work. We expect, furthermore, that imposing pressures greater
than zero will increase the vibrational energy of both bands,
thus shifting the spectrum to higher frequencies as observed
experimentally.37 By considering the relative prefactors of the
LJ and FENE potentials, we find it instructive to interpret the
low-frequency part as a Lennard-Jones “sea”, that comprises
weak but ubiquitous interchain LJ interactions, while the high-
frequency part represents FENE bonds that are fewer in
number and follow specific paths along chain backbones.
Within this picture, the contributions to the VDOS coming
from bending interactions are highly sensitive to κbend/κLJ. In
particular, when κbend/κLJ is small, we expect bending
interactions to contribute frequencies comparable to, or even
lower than, the LJ interactions. By contrast, when κbend/κFENE
→ 1, we expect the bending interactions to contribute
frequencies comparable to the FENE interactions. We
anticipate a redistribution, therefore, of the bending contribu-
tions from the low- to high-frequency band as κbend/κLJ is
increased.
By analyzing the motion patterns with respect to the

geometry outlined in Figure 6, we can see that for flexible
chains out-of-plane (rocking) motions are predominantly
apparent in the low-frequency peak, while the more energetic
modes mainly contain motions in the plane (skeletal
vibrations). This is consistent with the low-frequency band
being mainly due to LJ interactions, since they are the only
interactions in the system which are not contained in the plane
defined by two adjacent bonds. Consequently, the high-
frequency part is mostly caused by the FENE bonds, which
point along the chain backbones.
For high bending stiffness we can see a separation between

along chain and perpendicular motion, of which the latter one
occupies the high-frequency part. Hence, the three-body
bending interaction is mostly associated with perpendicular
motion, whereas the FENE interaction is rather associated with
along-chain motions. This makes sense as our chains have a rest
angle ϕ0 > π/2, meaning the FENE bonds point mostly along
the chain direction.
For longer chains we see rocking motion arising at higher

frequencies. The reason for this is that perpendicular in-plane
motion caused by one triplet in the chain causes out-of-plane
motion from the perspective of neighboring triplets, since they
most likely do not lie in the same plane (as would be the case
for a completely flat chain). As our chains are freely rotating,
having a completely flat chain is very unlikely, which explains
why strong bending interaction causes rocking motion at high
frequencies.

2. Short Chain Behavior. For chains with L = 3, we use the
analytical form of the eigenvalues, including both bending and
stretching interactions, to provide insights into the behavior of
the VDOS measured in the simulation. The analytical
derivation is reported with full details in Appendix B, with
the expressions for the eigenvalues given in eq B2. We present
both the analytical and numerical results in Figure 7.
The analysis predicts three nonzero eigenmodes, whose

characteristic eigenfrequencies as a function of κbend/κFENE are
given in Figure 7b. The splitting of their associated motions
into along-chain and perpendicular components is given in
Figure 7d,f. Since L = 3 chains are planar, rocking motions are
not part of this analysis. We have seen that rocking motions
contribute mostly to the lower LJ sea band and not so much to
the high-frequency skeletal band which is our main focus here.
In Figure 7a,c,e we can see the VDOS for three different

values of κbend/κFENE as determined from the simulation at L =
3. Aside from the LJ peak (which is not part of the analytical
model), we can see that the VDOS follows closely the analytical
prediction of the frequencies. In particular, the peak ω1 remains
dominated by along-chain motions and also remains rather
independent of κbend/κFENE throughout. ω2 is initially at zero
(meaning that it is a soft mode) but becomes stiffer and moves
to the right as κbend/κFENE is increased. Meanwhile, ω3 is initially
slightly lower than ω1 but also increases progressively,
eventually crossing over and becoming the higher of the
three eigenvalues and at the same time becoming dominated by
perpendicular motion.
While the analytical model predicts delta peaks at eigenvalues

ω1, ω2, and ω3, in practice the peaks are broadened due to the
distribution of rest angles, even for very high bending stiffness.
At around κbend/κFENE = 0.3 the two peaks ω1 and ω3 start to
overlap and to merge into a single high peak. By looking at the
evolution of eigenfrequencies and the associated motions for
bending stiffness larger than κbend/κFENE = 0.3, we can also
verify the interpretation that high-frequency modes ω3 are
dominated by perpendicular motions for high κbend/κFENE,
whereas the mode that only depends on the backbone
interaction ω1 is dominated by along-chain motions independ-
ently of κbend/κFENE. The mode ω2 has weights for along-chain
and perpendicular motion which are the specular opposite to
the ω3 case and hence presents a growing along-chain character
upon increasing κbend/κFENE.
VDOS for additional values of κbend/κFENE are shown in

Figure 9. We can clearly see the continuous shift of modes
according to the analytical result given in eq B2, reflected also
in the motion pattern associated with those modes as shown in
Figure 7.

3. Dependence on Bending Stiffness for L > 3. For longer
chains we can see the same general features as for L = 3
(Figures 8 and 9). Higher bending stiffness leads to
redistribution of modes from the lower part of the FENE
regime toward higher frequencies with an overlap happening at
κbend/κFENE ≈ 0.3, where they form a single peak. Above that
value the bending interaction shifts modes associated with
perpendicular motions toward higher frequencies, while the
modes associated with along-chain motion stay relatively
unchanged.
The strong bending interaction also causes high frequency

out-of-plane motions to appear, as discussed above. The gap
between the LJ sea and the FENE band is filled by modes in the
same way as the third peak arises for L = 3. We can relate the
peak at ω = 60 to ω1 from the L = 3 model system by looking
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at a second toy model, the freely rotating chain with constant
bond angle but no bending potential, as described in Appendix
C, eqs C1−C8. The VDOS is given by eq C7, and is U-shaped
spectrum with two divergent peaks at the van Hove singularities
(similar to the textbook example of completely straight linear
chains with all angles at 180°). Since ω1 does not change with
the bending stiffness, it is natural that a remnant of this peak
related to this frequency appears stationary for all bending
stiffness. The lower peak, however, would correspond to ω3,
which depends heavily on the bending stiffness and can
therefore not be fully captured by a toy model without bending
interaction.
We further studied the so-called Boson peak, defined as the

excess of low-frequency modes above the Debye ∼ ω2 law,
which is a paradigmatic and defining feature of glasses. In
Figure 8b the VDOS normalized by the Debye law is shown,
and it is evident that increasing the bending stiffness causes a
significant decrease of the Boson peak. This is due to the fact
that, since the VDOS is a normalized distribution, if vibration
modes are shifted to high frequency due to the stiffening of
skeletal vibrations involving bending, then necessarily the
density of modes has to decrease in lower-frequency parts of
the spectrum. From the point of view of mechanical response, a
decrease of the Boson peak is linked with a decrease of the
nonaffine component of elastic19,20 and viscoelastic38 response
which contributes negatively to the shear modulus.
Hence, increasing the bending stiffness has a twofold effect

on the elasticity: it increases the affine part of the shear
modulus (which is a positive contribution to rigidity) by
increasing the stiffness constant, and it decreases the Boson
peak and therefore decreases (in absolute value) the nonaffine
part of the shear modulus (which is a negative contribution to

rigidity), as explained in previous work.19,20 This, however,
does not account for the structural effect brought about by
increasing stiffness, which leads to volumetric expansion and,
under certain conditions (as discussed by Ness et al.31), may
lead to a decrease of shear modulus upon increasing bending
stiffness, thus giving rise to a nonmonotonic dependence of the
shear modulus on chain stiffness. Clearly this mechanism by
which the Boson peak is changed in polymer glasses is very
different from other mechanisms discussed in the literature for
small-molecule or atomic glasses.39,40

To summarize, we can separate the spectrum into four
distinct parts: (i) the lowest frequency band of LJ sea which
gets lowered as, with higher bending stiffness, more modes are
shifted to higher frequencies; (ii) a stationary peak around ω =
60 strongly associated with along-chain motion/vibration and
with characteristic frequency ω1; (iii) modes associated with
vibrations perpendicular to the chain axis, which resemble the
behavior of ω3 and the frequencies of which diverge with the
bending stiffness; and (iv) modes associated with along-chain
vibrations that resemble the behavior of ω2 filling the regime
between the LJ sea and the ω1 peak.

4. Dependence on Length L. By increasing the chain length,
we introduce more high-energy FENE bonds into the system,
which leads to a shift or redistribution of modes from the low
to the high-frequency band, causing a lowering of the LJ peak
(Figure 9). This is particularly evident for fully flexible chains.
Additionally, the number of possible polymer conformations
increases drastically with chain length. In the VDOS this leads
to a loss of distinct features (i.e., sharp peaks become
broadened), especially in the high-frequency band. The effect
is most visible for fully flexible short chains of L = 3, 4, 5,
whereas the difference between L = 10 and L = 50 is only
marginal. The total number of additional FENE bonds per
chain n decreases as the chains become longer

= Δ =−
+n N n N/ , /L

L L L
1 1

( 1)
, and therefore the change in

total bond energy becomes smaller. As such, the averaged
spectrum of sufficiently long (L > 5) chains already
approximates the spectrum of an infinitely long chain quite
well. A sample of chains with L = 10 consequently shows the
same shape as for L = 50 (or even L = 1000). We thus limited
our analysis to systems with those lengths, as there is no new
physics to see in the spectrum of chains longer than L = 50.
The distributions of motion patterns do not change much with
the chain length, aside from the adjusting to the overall shape of
the spectrum described above. An analytical derivation for fully
flexible linear chains with L = 2, 3, 4, 5, with stretching
interactions, is reported with full details in Appendix C.

V. CONCLUDING REMARKS

We presented a systematic analysis and interpretation of the
structure, internal stresses, and vibrational spectra of glassy
polymers from coarse-grained simulations, based on the
Kremer−Grest bead−spring model with an energy minimum
for angular bending interaction. Varying the angular stiffness
and the chain length leads to rich phenomenology: an increase
in both of these parameters causes a buildup of internal stresses
due to the competition between bending and stretching degrees
of freedom, both of which want to minimize their energy at the
same time. This leads to increased deviations from the minima
of LJ and FENE interactions, an effect amplified for longer
chains.

Figure 8. (a) Vibrational density of states for L = 50 upon increasing
the stiffness, κbend/κLJ. The arrow points in the direction of increasing
bending stiffness. (b) Same data as (a) with the VDOS D(ω) rescaled
by ω2 to highlight the behavior of the Boson peak.
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For flexible chains with κbend/κFENE < 0.3 there are two bands
in the VDOS spectra, corresponding to LJ-dominated
interactions at low frequency (the LJ sea) and to skeletal
modes dominated by FENE bonds at high frequency (the high-
frequency skeletal band). For chains with higher bending
stiffness this separation breaks down as modes associated with
angular interactions appear, filling the gap between the two
bands and creating additional high frequency modes. The latter
of these are mostly made up from vibrations perpendicular to
the chain, while the gap is filled by along-chain motions,
creating a new separation between vibrational regimes in the
spectrum.
For short chains, the spectra feature sharp peaks whose

behavior as a function of stiffness correspond very well with our
analytical prediction. For longer chains this structure loses its
sharp features and tends to a more continuous spectrum in
which the various peaks are broadened by the averaging over
many different chain conformations.
This framework and these concepts can be applied in future

work to molecular and atomistic simulations of realistic

materials,41,42 possibly in combination with the Kernel
Polynomial Method43 which can greatly speed up the
evaluation of the VDOS using the Hessian as input. We
anticipate that the generic features of the VDOS predicted in
this work will be robust to the introduction of more specific
chemical interactions (including those that break the isotropic
interaction symmetry), since the features of the vibrational
spectrum are related essentially to the energy and the relative
strength of interactions. For example, hydrogen bonds (which
have typical energy (4−13 kJ/mol) an order of magnitude less
than covalent C−C bonds (346 kJ/mol)) would be expected to
add to the part of the spectrum that is already dominated by the
LJ sea. The same can be stated about stacking interactions,
which have typical energies of 8−12 kJ/mol.
Finally, our results may open up the possibility of

quantitatively linking the Raman and Brillouin spectra of glassy
polymers with their viscoelastic response, since the VDOS is a
key input to calculate viscoelastic moduli within recent
developments in the nonaffine linear response of amorphous
solids.17,38

Figure 9. Vibrational density of states for a range of parameters explored in this work. Shown are the overall result in black as well as the
decomposition into rocking (red), perpendicular (blue), and along-chain (green) motions as we defined in Figure 6. Given in the legend of each
panel are the chain length and stiffness. Results for various system sizes are shown in the bottom left panel, demonstrating that the features discussed
here are independent of Np for the case of fully flexible chains.
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■ APPENDIX A. EXPLICIT FORM OF THE HESSIAN
Here we show the explicit form of the entries to the Hessian for
each potential. First we recall the general form
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For the two central-force potentials (FENE and Lennard-
Jones) we have z = |rj − ri| = rij. It should be noted that all
derivatives are evaluated at the actual system configuration from
the simulation. For central forces we get
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Here n̂i j = ri j/rij denotes the unit bond vector between beads i
and j. The above expressions are valid both for FENE and
Lennard-Jones bonds with the only difference being the
stiffness cij and tension tij that have to be evaluated depending
on the potential. For the angular potential we have a slightly

different situation as our variable is now the angle between the
two bonds rj − ri and rk − ri:
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To make the calculation easier, we rewrite the first line of eq A2
to give
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These formulae were derived in a slightly different but
substantially equivalent fashion by Van Workum et al.44

■ APPENDIX B. ANALYTICAL SOLUTION FOR
TRIATOMIC MOLECULE WITH BENDING
STIFFNESS

We next write down the Hessian for an isolated oligomer with
L = 3 (a triatomic molecule model), accounting for both
stretching and bond-bending interactions. As the eigenvalues of
the Hessian are invariant under spatial rotations, we can choose
the chain lying flat in the x−y plane with beads P1 = −r(ς,0), P2
= r(0,υ), P3 = r(ς,0) and ς = sin θ/2, υ = cos θ/2:
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Here we used the dimensionless bending stiffness γ′ = γ/(κr2)

for bond length r, where γ (which has units of energy) is the

second derivative of the angular bending potential with respect

to the angle, while κ is the spring constant of the bond for

central-force stretching of the bond. The above matrix has three

nonzero eigenvalues, leading to the following eigenfrequencies:
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As we can see, one eigenfrequency ω1 is independent of the
bending stiffness, while ω2 shows a convergent behavior against

γ′, ω κ θ→ −m3 /( (2 cos ))2 and ω3 diverges like γ∼ ′ .

■ APPENDIX C. ANALYTICAL SOLUTIONS FOR
FULLY FLEXIBLE CHAINS

In this Appendix we consider a toy model for the determination
of the skeletal vibration modes of a single polymer chain. The
following assumptions are made: (i) the chain is fully flexible
(vanishing angular stiffness); (ii) only in-plane motions are
considered (rocking or other out-of-plane vibrations are
neglected). These assumptions are needed to obtain analytical
results. We will start with the simplest case of a zigzag regular
chain with a single fixed value θ of the angle between two
adjacent bonds, and we will subsequently consider the case of a
distributed θ. We consider two variations of this model, first for
a zigzag chain with fixed value of the angle, and subsequently
for a uniform (random) distribution of the angle.
The Hessian has the following block structure:

=

−

− + − ⋯

− + −

− + − ⋮

⋮ ⋱ −

⋯ −
−

− −

⎛

⎝
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A A

A A A A

A A A A
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23 23 34 34
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(C1)

with blocks given by

κ=

⎛

⎝
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⎞

⎠
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A

m

n n n n n n
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(C2)

where the unit vector nij which goes from bead i to a nearest-
neighbor j, and spring constant κ = 1. To get the characteristic
polynomial p(λ), one has to evaluate the determinant |H − λ1|.
We can iteratively solve this by using the standard formula for
block matrices:

= | || − |−A B
C D

D A BD C1

(C3)

where the entries are matrices and the relation for our 3 × 3
blocks:

κ θ· · =A B A
m

Acos AB

2

2
2

(C4)

where θAB is the angle between the bonds belonging to A and B.
After some calculation we get the following recursion formula
(omitting the 2L + 1 trivial eigenvalues λ = 0) for the above
matrix:

θ

=

=

= −− − − −

p x

p x x

p x xp x p x

( ) 1,

( ) ,

( ) ( ) cos ( )n n n n n

0

1

1
2

1, 2 2 (C5)

where λ= −
κ

x 2m . The recursive relation for pn(x) can also be

derived on more formal grounds.45

Note that n denotes the number of bonds in a chain and not

the number of beads in the chain (n = L − 1). For arbitrary

angles between the bonds it is not possible to describe the roots

of this polynomial, except for oligomers (see below). But, if all

angles are the same, we can bring (C5) into the form of the

Chebyshev polynomials of the second kind Un(x) by

substituting x ̃ = x/2 cos θ:

θ

θ

λ

θ

̃ = ̃

̃ = =
−

κ

p x U x

x
x

( ) cos ( ),

2 cos

2

2 cos

n
n

n

m

(C6)

The roots of Un(x) are π= =+( )x k ncos ; 1, ...,k
k

n 1
, which

gives us the eigenvalues of the linear chain with constant angle

as

λ ω κ θ π

ω
π
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(C7)

This result can also be derived using a different approach which

exploits the periodicity of the chain with constant angle, as was

done by Kirkwood.13 If we assume that the chain points along

the x-axis we can identify the previously introduced along-chain

and perpendicular motion as A and B in eq 6 of Kirkwood.13 By

using the dispersion relation found in this work, we can solve

for those two quantities and find the weight functions:

ω θ
θ

ω θ

ω

ω θ
θ

ω θ

ω

= | |
| | + | |

= + + −

= | |
| | + | |
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(C8)

As mentioned before, for the flexible case with distributed

angles an analytical solution is not accessible for a chain of

arbitrary length. But we can give the eigenvalues in the case of

short chains with L = 2, 3, 4, 5:
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