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Abstract
The role of friction in non-colloidal suspensions is examined with a model which splits the viscosity into a frictionless
component (τ*) plus a frictional component which depends on the ratio of the particle pressure (P) to the shear stress (τ).
The model needs the input by computation of τ* and P and a suitable choice of particle friction coefficient (μ). It can be
extended to elongational flows and cases where sphere roughness is important; volume fractions up to 0.5 are consid-
ered. It is shown that friction acts in a feedback or “bootstrap” manner to increase the suspension viscosity. The analysis
is also useful for deducing the friction coefficient in suspensions from experimental data. It was applied to several sets of
experimental data and reasonable correlations of the viscosities were demonstrated. An example of the correlation for
spheres in a silicone oil is shown for volume fractions 0.1–0.5.
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Introduction

The role of interparticle friction on the relative viscosity
of non-colloidal suspensions of spheres at volume frac-
tions (ϕ) up to about 0.5 is important, and several com-
putational papers on the effect of friction on viscosity
have been published (for example, Sierou and Brady
(2002); Gallier et al (2014); Mari et al. (2014); Cheal
and Ness 2018). Yet the way friction acts to increase vis-
cosity is not quite clear, and the present work suggests a
“bootstrap” feedback mechanism to account for this in-
crease. We shall use the analysis to estimate the friction
coefficient needed to explain the viscosity increases ob-
served. We assume that the matrix fluid is Newtonian with
a viscosity ηo and that inertia is negligible; the Péclet
numbers in the experiments are of order 108.

The vast majority of studies on suspensions concentrate
on simple shearing, but this is not generally sufficient to

describe their rheology (Mahmud et al. 2018). Hence, in
this paper, we also consider extensional flows.

We note the work of Boyer et al. (2011), who applied a
compacting pressure Pp to particles in shear flow permeated
by a matrix fluid. An important parameter was Iv = ηo. γ̇ /Pp;
this factor was also used by Gallier et al. (2014) and has been
called the Leighton number (Huang et al. 2005). They mea-
sured the friction coefficient (μ) as a function of concentration,
leading to a deduction of the relative viscosity ηr as a function
of ϕ, the maximum packing fraction ϕm, and a friction coeffi-
cient μc = 0.32 + 0.38/f (ϕ) where ϕm = 0.585 and

f ϕð Þ ¼ 1þ 0:005ϕ2 ϕm−ϕð Þ−2 ð1Þ

The coefficient f was deduced for polystyrene (PS) and
polymethyl methacrylate (PMMA) spheres in two matrix
fluids, and with the above value of μc, the relative shear vis-
cosity was expressed as

ηr ¼ 1þ 2:5ϕ 1−ϕ=ϕmð Þ−1 þ μc ϕ= ϕm−ϕð Þð Þ2 ð2Þ

The fit of their data from ϕ = 0.3 to 0.585 with Eq. 2 was
good, but Eq. (2) does not show shear-thinning, which is
very prevalent in these suspensions (Zarraga et al. 2000;
Moon et al. 2015). Hence, we present below a “bootstrap”
or feedback friction mechanism which allows shear thin-
ning and which can also be used in extensional flows.
Generally, the analysis is also shown to be useful in dedu
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cing the friction coefficient variation in flowing non-
colloidal suspensions.

A bootstrap mechanism

We begin with steady simple shearing and assume that the
shear stress (τ) is composed of two elements—one (τ*) is
the shear stress in a frictionless suspension, and the remainder
(τf) is due to friction. The sum of τ* and τf is the total
(macroscopic) shear stress. Now, τ* can be computed but is
not easily measured experimentally because truly frictionless
suspensions do not exist. There are a number of computational
results in the literature for frictionless suspensions and a se-
lection is shown in Table 1.

There are some differences between these values which
need to be borne in mind—these results clearly show around
± 5% variations. The computations of Mari et al. (2014) and
Cheal and Ness (2018) are for a bimodal half-half mixture of
spheres with a diameter ratio of 1.4:1, which causes a reduc-
tion in the value of the viscosity relative to the monodisperse
case (Qi and Tanner 2011). The reduction in viscosity is
caused by an increase in the maximum packing fraction of
about 3% at ϕ = 0.5 due to bimodality, leading to a drop in
viscosity of order 10% relative to the monodisperse case. At
lower concentrations, the effect of bimodality is less marked.

We assume that τf is due to friction induced by the mean
particle pressure (P) forcing particle-particle contact; P is de-
fined as − 1/3 (Trσp), where σp is the stress tensor due to the
particles. It should be emphasized that P is not equal to the
pressure p used to balance the momentum equation—the two
can differ by any amount due to, for example, an imposed
hydrostatic pressure. Hence, the value of P is equal to the Pp

quantity of Boyer et al. (2011) and the P value of Cheal and
Ness (2018) mentioned above and is related to the Σ stress
tensor of Sierou and Brady (2002).

It is assumed that τf = kμP, where k is a constant and μ is a
coefficient of friction for the spheres. From the data of Cheal

and Ness (2018) and subsequent computations by Ness, one
can find numerical estimates of P/τ for ϕ = 0.3, 0.4, and 0.5 as
shown in Fig. 1 and in column 3 of Table 2. These computa-
tions were made for μ = 0, 0.25, 0.5, 0.75, and 1.

Generally, one would expect that polystyrene spheres
would have a friction coefficient of about 0.4–0.5 (Bowden
and Tabor 1956); we assume here, since there is some lubri-
cation, that the value is 0.40. Hence, in order to compare with
our experiments, we have used the Cheal and Ness (2018)
values of P/τ as in Fig. 1 for the entries for ϕ = 0.4 and 0.5
in column 3 (Table 2). Support for these results can be found
from the paper by Gallier et al. (2014). They show in their
Figure 17 values of the normal stresses as a function of friction
coefficient for μ = 0 to 0.8 at ϕ = 0.4. The increase in P/τ with
μ for these data is close to linear. For ϕ = 0.1–0.2 in Table 2,
we use the values given by Sierou and Brady (2002) which
assume μ = 0; friction is not important at these lower concen-
trations (Gallier et al. 2014). For ϕ = 0.3 from Gallier et al.
(2014), we use P/τ = 0.20.

With these assumptions, we find

ηr ¼ ηr
* þ k μ P=τð Þ ηr

or
ηr ¼ ηr

*= 1−k μ P=τð Þð Þ
ð3Þ

where ηr
* is the relative viscosity for a frictionless suspension

at the given volume fraction (ϕ). We use the average comput-
ed values of ηr

* from Table 1, and for ϕ = 0.1, 0.2 values are
taken from Sierou and Brady (2002).

Equation 3 shows a “bootstrap” or feedback character so
often seen in frictional studies; a greater stress intensifies the
effect of friction, which in turn increases the stresses.

Now, the value of the friction coefficient μ expected for
polystyrene spheres is about 0.4 at low rubbing speeds; formetal
spheres, it could be lower, of order 0.3. The value of kμ can be
found from matching the relative viscosity data with experi-
ments at low (0.1 s−1) shear rates made by Moon et al. (2015)
at volume fractions of 0.4 and 0.5. We find that kμ ~ 0.70, and
assuming μ = 0.4, we find k = 1.75. Table 2 (last two columns)
shows that the overall agreement of Eq. 3 with experiment is
reasonable; it must be borne in mind that the data for the
relative viscosities, both computed and experimental, and the
values of P are subject to uncertainties of order 10%. Clearly,
jamming will take place for ϕ in the range 0.5–0.6, although
frictionless (bimodal) suspensions do not jam until ϕ ~ 0.66
(Mari et al. 2014). The data in Table 2 suggest jamming occurs
at ϕ ~ 0.57. Random close packing indicates a divergence at
ϕ = 0.639 for monosized spheres, but with the bimodal system
of Mari et al. (2014) and Cheal and Ness (2018), one expects
(Qi and Tanner 2011) that the maximum packing fraction
increases to about 0.665, close to the numerical result for
frictionless spheres (0.66) reported by Mari et al. (2014).

Clearly, the relative viscosity is sensitive to the value as-
sumed for the friction coefficient. For example, if μ is

Table 1 Computations of the relative viscosity (ηr
*) for frictionless

spheres at various volume fractions

Source Volume fraction (φ)

0.3 0.4 0.5

Sierou and Brady (2002) 3.10 6.24 15

Bertevas et al. (2010) 3.16 6.53 –

Mari et al. (2014) ~ 3.7 6.2 13.5

Gallier et al. (2014) 3.1 5.93 –

Cheal and Ness (2018) – 5.68 13.1

Average 3.26 6.12 13.9
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increased by 5%, and k is kept constant, then the predicted ηr
from Eq. 3 increases, for ϕ = 0.5, from 55 to 65. The frictional
rubbing speed also varies with shear rate—generally (Bowden
and Tabor 1956;Moore 1975), an increase in shear rate gives a
reduction in friction from the static value, down to a
minimum, and then a rise at very large shear rates.

One might ask about changes in the values of P/τ due to other
factors; they appear from the work of Sierou and Brady (2002) to
be quite insensitive to assumed changes in interparticle forces (±
2% atϕ = 0.4).More data would clearly be welcome, but wewill
assume that P/τ is independent of these factors and depends only
on the volume fraction and the friction coefficient.

Comparison with experiment

We can test these ideas against the extensive data of Thomas
(1965). Thomas found considerable scatter in the results in the
literature and proposed that a mean result for the relative vis-
cosity was

ηr ¼ 1þ 2:5ϕþ 10:05ϕ2 þ 0:00273 exp: 16:6 ϕð Þ ð4Þ

Results for the relative viscosity from Eq. (4) (Thomas) and
Eq. (3) with kμ = 0.1 are shown in Table 3, together with the
computed average frictionless ηr

* values from Table 2. The P/
τ values assumed are for zero friction.

Clearly, the Thomas formula (Eq. (4)) is close to the fric-
tionless result; if k = 1.75, then μmust have the low value of ~
0.06. In fact, Thomas’s data show a large scatter and the values
found from Eq. (4) are not near the upper limits of ηr in Fig. 2;
for example, at ϕ = 0.5, Thomas showed that ηr ranges from
7.4 to 49.9. In Fig. 2, we compare the Thomas envelope
(dashed lines) with the result of Eq. 4 and the data of column
4 in Table 3. The open black squares represent the computed
frictionless results η*r in Fig. 2. Since the Thomas results do
not recognize shear thinning, the scatter above and below the
line of Eq. 4 is to be expected. Results with μ = 1 lie close to
the upper limits in Fig. 2.

A further investigation of the scheme can be made with the
data of Moon et al. (2015) using a 1.1-Pa s silicone oil as a
matrix fluid. There the roughness of the 40-μm diameter poly-
styrene spheres was reported—the average roughness was
0.15% of the sphere radius. The expected coefficient of dry
friction at low rubbing speeds for this material is 0.4–0.5
(Bowden and Tabor 1956), but the friction coefficient is ex-
pected to fall at higher shear rates in the presence of fluid
lubricant. Figure 3 shows the relative viscosity data as a

Table 3 Comparison with Thomas’s (1965) data from Eq. 4 shown in
column 2 and the results from Eq. 3 in column 4

ϕ ηr (Eq. 4) ηr
* ηr (Eq. 3; kμ = 0.1)

0.1 1.36 1.33 1.32

0.2 1.98 1.90 1.90

0.3 3.05 3.26 3.32

0.4 5.70 6.12 6.34

0.5 15.75 13.9 14.9

Fig. 1 The effects of frictional
coefficient on P/τ and P/σ. The
open symbols represent P/τ, the
ratio of the particle pressure (P) to
the shear stress (τ) in shear flow;
the closed symbols represent P/σ,
the ratio of the particle pressure
(P) to the elongational stress (σ)
in uniaxial elongational flow. The
circles, diamonds, and triangles
represent 50%, 40%, and 30%
suspensions, respectively

Table 2 Suspension parameters for Eq. 3: k = 1.75, μ = 0.4.
Experiments at 0.1 s−1 from Moon et al. (2015). P/τ values for ϕ = 0.1–
0.2 from Sierou and Brady (2002); for ϕ = 0.3 from Gallier et al. (2014);
for 0.4 and 0.5 from Cheal and Ness (2018). The ηr

* average values for
ϕ = 0.3–0.5 are from Table 1 and for ϕ = 0.1–0.2 from Sierou and Brady
(2002)

ϕ ηr
* (average) P/τ ηr (expt) ηr (from Eq. 3)

0.1 1.33 0.0023 1.39 1.33

0.2 1.90 0.020 2.22 1.93

0.3 3.26 0.20 4.20 3.79

0.4 6.12 0.52 9.44 9.62

0.5 13.9 1.07 61.2 55.4
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function of shear rate, and the shear thinning at higher con-
centrations is clear. This can be accounted for by assuming
that kμ varies with shear rate; we will in fact assume that k is a
fixed number (1.75), and all variation of kμ is due to varia-
tions of μ. Table 4 shows the experimental variation of ηr with
shear rate in the range 0.1–100 s−1 for concentrations 0.1–0.5.
The values of kμ at each shear rate were found from consid-
ering the values of ηr at ϕ = 0.4 and 0.5. At the lowest rates of
shearing, we assume μ = 0.4 (at γ̇ = 0.1 s−1). Using k = 1.75,
we find the values given in Tables 4 and 5. The relative vis-
cosity data from Eq. 3 are presented in Fig. 3. It is probable
that edge fracture is beginning at a shear rate of ~ 100 s−1 for
ϕ = 0.5. Keentok and Xue (1999) suggested from studies of
polymer solutions that edge fracture occurred when │N2│ >
5.5Γ/h, where N2 is the second normal stress difference, Γ is
the surface tension coefficient, and h is the sample thickness at
the rim. In the set of tests shown in Fig. 3 Γ = 0.021 Pa m, h =

1mm and fromDai et al. (2013) N2 = − 4.4 ϕ3 τ, so for ϕ = 0.5
and a shear rate of 100 s−1, where the relative viscosity is 11.7
from Table 4 and the matrix viscosity is 1.1 Pa s, we find the
magnitude of N2 to be ~ 708 Pa, whereas the value of 5.5Γ/h is
about 116 Pa. This suggests fracture does occur.

For comparison, the value of ηr found for polystyrene
spheres by Boyer et al. (2011) from Eq. (2) is 31.9 for ϕ =
0.5. From Table 4, column 11, we see experimental values
between 61.2 and 11.7, depending on shear rate. The value
31.9 lies between our data for shear rates of 1 and 10 s−1.

The variation of μ with shear rate is indicative of less fre-
quent solid-solid contact and/or better lubrication and is in
accord with expectations (Bowden and Tabor 1956; Moore
1975). Of course, the actual shear rate between two spheres
is higher than the macroscopic average shear rate, depending
on the concentration ϕ (Vázquez-Quesada et al. 2017). Rough
estimates of the amplification (M) of shear rate between

Fig. 2 Relative viscosity versus
the volume fraction of the
suspensions. In the figure, the
dashed lines represent the upper
and lower Thomas estimates. The
full line presents Eq. 4. The black
squares represent the frictionless
relative viscosity from Table 2
column 2, and the values from Eq.
3 are shown as open circles

Fig. 3 Influence of shear rate on
relative viscosity, showing shear
thinning at higher concentrations.
Dashed lines are experimental
values; full lines are from Eq. 3
via Table 4. For the top curve
(ϕ = 0.5) at the largest shear rates,
edge fracture occurs
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particles have been given by Tanner and Dai (2016a); these
are around 5 at ϕ = 0.3, 8 at ϕ = 0.4, and 19 at ϕ = 0.5.
(Ovarlez et al. (2015) have given another amplification factor
(M*) which is of a similar order of magnitude.) Hence, even at
small macroscopic shear rates, there are places of more inten-
sive shear.

A further test of the bootstrap concept can be found from
the work of Guy et al. (2015). That paper considers the vis-
cosity of many sizes of polymethyl methacrylate (PMMA)
spheres (0.268 to 45 μm diameter) in matrices with viscosities
of 2.4 and 2.83 mPs s. In Fig. 1b of this paper, one sees two
sets of results for high Péclet numbers (Pe)—the lower viscos-
ity curve is very close to the frictionless results shown in
Table 1 here, and the divergence of the viscosity is near ran-
dom close packing (ϕ = 0.639). The higher curve diverges at
around ϕ = 0.56. At ϕ = 0.5, the higher curve shows a relative
viscosity of 76.5, while the “frictionless” curve shows ηr

* ~
14.7 (Table 1 above shows 13.9). From Eq. 3, one finds, with
k = 1.75 and P/τ = 1.07 from Table 2, that μ = 0.43, close to
expectations. With this value of μ, the remaining data are
described well.

It appears that the value of the friction coefficient is quite
variable; some direct measurements of interparticle friction
between two beads by Chatté et al. (2018) found, for polyvi-
nyl chloride (PVC) spheres, that μ = 0.45 ± 0.35. Moore
(1975) gives a friction coefficient of 0.4–0.5 for PVC.

Effect of particle roughness

One can also apply the model to the description of the effect of
sphere roughness on relative viscosity. Experimental work by
Moon et al. (2015) and Tanner and Dai (2016b) shows that
sphere roughness increases the relative viscosity in

suspensions with Newtonian matrices. We will assume that
only the coefficient of friction changes with roughness. The
roughness ratio is defined as (average roughness)/sphere radi-
us. Tests with roughness ratios between 0.15 and 5.3% were
carried out, and we report here only on the 0.15% and 5.3%
results; the others show intermediate effects.

Hence, the relative viscosity ηrough becomes

ηrough ¼
η*r

1−kμr
P
τ

� �� � ð5Þ

where μr is the coefficient of friction for rough spheres. Using
the data for 40-μm polystyrene spheres in a silicone oil matrix
(1.1 Pa s viscosity at 24 °C) and assuming k = 1.75 as before,
we find that the friction coefficient changes little until the
shear rate approaches 10 s−1 or greater (Table 6).

There is generally a decrease ofμ at higher shear rates. The last
row of Table 6 shows the values ofμ as a function of shear rate for
the “smooth” spheres (actual roughness ratio ~ 0.15%) from
Table 5. Edge fracture occurs at the highest shear rate for the
50% suspension, due to the large values ofN2, as discussed above.

Uniaxial elongational flows

Although it is essential to consider flow types other than
shearing in the study of suspension rheology (Mahmud et al.
2018), little has been done in this area. For example, in planar
elongational flow, one has the computational work of Seto et
al. (2017), and in uniaxial, planar, and biaxial elongation,
Cheal and Ness (2018) have published extensive computa-
tions. In these computations, a steady state was achieved from

Table 4 Relative viscosities at various shear rates for ϕ = 0.1–0.5. Experimental values versus Eq. 3. k = 1.75, friction coefficients from Table 5

ϕ = 0.1 ϕ = 0.2 ϕ = 0.3 ϕ = 0.4 ϕ = 0.5

γ̇ (s−1) Eq. 3 Exp. Eq. 3 Exp. Eq. 3 Exp. Eq. 3 Exp. Eq. 3 Exp.

0.1 1.33 1.39 1.93 2.22 3.79 4.2 9.61 9.44 55.4 61.2

1 1.33 1.39 1.92 2.2 3.74 3.97 9.18 9.26 41.6 41.3

10 1.33 1.39 1.92 2.17 3.68 3.93 7.88 7.83 25.1 27.8

100 1.33 1.28 1.91 1.99 3.53 3.23 7.24 7.22 20.1 11.7

Table 5 Values of k and μ for data of Fig. 3

γ̇ (s−1) kμ k μ

0.1 0.70 1.75 0.40

1 0.65 1.75 0.37

10 0.48 1.75 0.27

100 0.35 1.75 0.20

Table 6 Rough sphere friction coefficients for 5.3% roughness ratio
(40-μm PS spheres) from Tanner and Dai (2016b)

ϕ γ̇ (s−1) = 0.1 γ̇ (s−1) = 1 γ̇ (s−1) = 10 γ̇ (s−1) = 100

0.3 0.56 0.56 0.55 0.15

0.4 0.39 0.43 0.34 0.24

0.5 0.46 0.40 0.33 (fracture)

“Smooth” sph. 0.40 0.37 0.27 0.20
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rest after a Hencky strain of around 1. There are no planar
elongational experimental results to compare with the results
of Seto et al. (2017), but the average pressure was given and it
appears to be of the same order as the product of the matrix
viscosity and the elongation rate. Importantly, for the
bootstrap mechanism, P is positive.

Cheal and Ness (2018) have shown that frictionless uniax-
ial elongational suspension flows have a Trouton Ratio (Tr) of
~ 3, as in a pure Newtonian fluid. Larger values of Tr occurred
when friction was introduced. Experiments by Mahmud et al.
(2018) and Dai and Tanner (2017) show Tr values greater or
less than 3.

In these necessarily unsteady in time elongational flows
and also in unsteady shearing flows, one expects that the sus-
pension structure, and hence η*r and P, also changes with time
until it reaches a steady state. It seems that the bootstrap mech-
anism can be applied to study these steady states.

In steady uniaxial, planar, and biaxial extensional flows, let
the extensional stress be σ and the corresponding extension
rate be ε�. Then, the bootstrap analysis may be replicated to
find

σ= ηo ε
�� �

¼ η*re

1−k1μ
P

σ

� �� � ð6Þ

where η*re is the relative frictionless viscosity value for the
flow being considered. The constant k1 is not expected to be
the same as k for shearing. One can construct the Trouton ratio
as follows.

T r ¼ σ
τ
¼

η*re 1−kμ
P
τ

� �� �

η*r 1−k1μ
P
σ

� �� � ð7Þ

Cheal and Ness (2018) found ηre*/ηr* to be nearly 3, 4, and
6 for uniaxial, planar, and biaxial extensions, respectively;
these are the Newtonian values. For uniaxial flow, we can
compare with the data of Dai and Tanner (2017).

In Table 7, the Trouton ratios (Tr) are computed using the
average of the experimental relative viscosity values and the
shear results from Table 2. As shown by Mahmud et al.
(2018), the Trouton ratio values vary considerably. While

the agreement between experiment and calculation is reason-
able, it is necessary to postulate a higher friction coefficient for
ϕ = 0.3 and 0.4. The only other experimental data (Mahmud et
al. 2018) show considerably smaller viscosities at larger strain
rates. The viscosity values for ϕ = 0.3 and 0.4 fall below the
frictionless computed values, which indicates that strain-rate
thinning occurs. The cause of this is not known; it is not due to
the mechanism proposed by Vázquez-Quesada et al. (2017)
where the shear thinning of the matrix fluid is considered. For
the suspensions, it is expected that the rates of deformation
between spheres are around 8√3 times the maximum elonga-
tion rate; this, for ϕ = 0.4, is about 560 s−1. From Vázquez-
Quesada et al. (2017), one finds that the silicone oil matrix
viscosity will drop by about 12% at this rate of deformation.
However, the elongational relative viscosities measured by
Mahmud et al. (2018) are only about 9.5, whereas the friction-
less computations give 16.8.

The odd behavior with corn syrup matrices

The work of Tanner and Dai (2016a) showed that suspensions
with corn syrup-based matrices exhibited huge unexpected
increases in relative viscosities when the spheres were rough-
ened. Using the same 40-μm diameter spheres as in the work
above (Dai and Tanner 2017), experiments with pure corn
syrup and Boger fluid matrices were made. At 24 °C, the corn
syrup showed a constant viscosity of 3.66 Pa s in a shear rate
range of 0.1 to 1000 s−1; normal stresses were too small to
measure. In order to get consistent results, it was necessary to
prevent evaporation and consequent crusting at the rim of the
samples. With “smooth” (actually 0.15% roughness ratio)
spheres, the results were much as expected, but for rougher
spheres (roughness ratio of 5.3%), very large unexpected in-
creases of relative viscosity were seen at low shear rates
(0.1 s−1) while at larger shear rates, up to 100 s−1 severe shear
thinning was seen (Fig. 4).

Tests were also made with a Boger fluid made up with
79.24% by weight of corn syrup and 19.80% glycerine and
with the addition of a mixture of water and polyacrylic acid
(PAA). This recipe is similar to that used by Zarraga et al.
(2001) and Dai et al. (2014). The addition of the glycerine,
which absorbs water from the atmosphere, helps counteract
the tendency of the corn syrup to dry out. Themixture exhibits
a nearly constant viscosity of 2.15 Pa s over the range 0.1–
100 s−1 in shear rate. Because of the PAA, measurable normal
stresses were present. Figure 5a, b shows the relative viscosity
results for ϕ = 0.3 and 0.4 for the Boger fluid suspensions. In
both cases, the large increase of relative viscosity seen at
0.1 s−1 disappears at 100 s−1; here, the relative viscosities for
“smooth” and rough spheres coincide. We can use the boot-
strap idea to study this behaviour.

Table 7 Uniaxial extension results. P/σ and viscosity data from Cheal
and Ness (2018); k = 1.75, k1 = 2.7. Experiments from Dai and Tanner
(2017) at elongation rates of 0.6–2.3 s−1

ϕ μ ηre (expt) ηre (Eq. 6) Tr (calc) Tr (expts)

0.3 0.45 14–20 14.9 4.0 4.3

0.4 0.45 36–55 41.1 4.5 4.9

0.5 0.35 92–147 127 3.0 2.9
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Fig. 4 Effects of shear rate on
relative viscosity for 40% volume
fraction suspensions of 40-μm PS
spheres in corn syrup. Sphere
roughness ratio 5.3%

a

b

Fig. 5 a Relative viscosity
comparisons between 30%
volume fraction “smooth” and
rough spheres in syrup-glycerin-
4%PAA/water Boger fluid. 30%
40-μm PS 0.15% roughness
(diamonds); 30% 40-μm PS
(roughness ratio 5.3%) (squares).
b Relative viscosity comparison.
40% 40-μm PS (5.3%
roughness)-syrup-glycerin-
4%PAA/water (triangles); 40%
40-μm PS (0.15% rough) in
syrup-glycerin-4%PAA/water
Boger fluid (asterisks)
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We assume that k = 1.75 remains unchanged in Eq. 3 and
that the frictionless relative viscosity (ηr

*) and the mean pres-
sure factor (P/τ) remain as in Table 2. Then, we can compute
the friction coefficient μ needed to describe the corn syrup
results (Table 8).

Discussion

So far, no scaling of the deformation rate has been given. We
plot the friction coefficients for the Newtonian cases from
Tables 5 and 6 in Fig. 6. The dry friction line (μ = 0.45) is also
shown. The data indicate that the friction coefficients begin to
decline at a shear rate of order 1 s−1.

Considering that the rotation rate of the spheres is a fraction of
γ̇; then the relative rubbing speed is of order γ̇a , where a is the
sphere radius. The magnitude of this rubbing speed in the exper-
iments quoted in Fig. 3, where a= 20 μm, varies from 2 μm/s at
a shear rate of 0.1 s−1 up to 2 mm/s at a shear rate of 100 s−1.
Hence, it is suggested that the critical rubbing speed (Uc) for the
onset of lower friction is about 20 μm/s. Using this value, all of
the previous data can be plotted in a dimensionless manner.

The rough spheres in Table 6 have friction coefficients
comparable to the Boyer et al. formula in Eq. 1 above; their
friction coefficient μc varies from 0.7 at ϕ = 0 down to 0.64 at
ϕ = 0.5. The high friction coefficient for the corn syrup matrix
in Table 8 at low shear rates is surprising. It is not expected
that corn syrup will crystallize, but something like gelling
must be taking place.

The results for the Boger fluids (Table 8), which also show
high μ values, indicate that for these non-Newtonian matrices,
additional factors are in play; it is likely that the frictionless
viscosities are variable and it is unlikely that k is a constant.
Unfortunately, there are no computations to illuminate these
points at present.

As for the elongational results, the marked strain-rate thinning
seen by Mahmud et al. (2018) remains to be further explored.

Conclusion

The bootstrap mechanism of friction enhancement in non-
colloidal suspensions appears to be a useful idea; the needed
parameters (ηr

*) and the mean pressure factor (P/τ) can be com-
puted, but are not known very precisely. Assuming k is fixed at
1.75, then reasonable values of the friction coefficient between
the spheres can be deduced for many of the Newtonian matrix
suspensions. We note the need for further accurate, self-
consistent computer modeling with realistic friction models; it
appears that constant friction coefficients are inadequate.

We have tested the idea with the Thomas (1965) data,
which do not consider shear thinning explicitly and with our
own data (Moon et al. 2015) for 40-μm diameter polystyrene
spheres in silicone oil (viscosity 1.1 Pa s); the data of Guy et
al. (2015) were also used. Volume fractions up to 0.5 were
considered. In order to introduce shear thinning, the friction
coefficients are assumed to be a function of sliding speed (U).

Table 8 Friction coefficients for polystyrene spheres

Matrix ϕ Roughness (%) μ (0.1 s−1) μ (100 s−1)

Corn syrup 0.4 5.3 0.95 0.37

Silicone oil 0.4 0.15 0.40 0.20

Silicone oil 0.4 5.3 0.39 0.24

Boger fluid 0.3 0.15 1.00 0.88

Boger fluid 0.3 5.3 1.41 0.88

Boger fluid 0.4 0.15 0.68 0.41

Boger fluid 0.4 5.3 0.98 0.41

PS dry friction – – 0.4–0.5 0.4–0.5

Fig. 6 Variations of friction
coefficients with shear rate. The
horizontal dotted line is the value
for polystyrene (~ 0.45). The
circles, squares, and plus signs are
for rough spheres of 30, 40, and
50% concentration from Table 6;
the solid line gives the data for
“smooth” spheres from Table 5
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In the present case, the critical sliding speed (Uc) appears to be
about 20 μm/s, and friction coefficients appear to drop when
this rate is exceeded. (There are other suggested mechanisms
of shear thinning available—for example see Vásquez-
Quesada et al. (2017) and Kroupa et al. (2017), but these
effects are assumed not to be dominant here.) The introduction
of roughness is considered; there is an increase of relative
viscosity with increasing roughness due to increasing friction
coefficients. For corn syrup-based matrices, we show that the
results can be explained by large friction coefficients at low
shear rates (0.1 s−1), while at higher (100 s−1) shear rates, these
unusual effects disappear. The very large friction coefficient
with the Boger fluid indicates that a further analysis is needed,
taking account of normal stress or other viscoelastic effects.

With the Newtonian matrices, the values of the first and sec-
ond normal stress differences are proportional to the shear stress
(Zarraga et al. 2000; Dai et al. 2013), so the complete set of
viscometric data can be found when the shear stress is known.

Finally, it appears that non-viscometric flows, such as elon-
gation, can be considered with the model, but more computa-
tions and experiments are needed.
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