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We use particle simulations to map comprehensively the shear rheology of dry and wet granular matter
comprising particles of finite stiffness, in both fixed pressure and fixed volume protocols. At fixed pressure
we find nonmonotonic constitutive curves that are shear thinning, whereas at fixed volume we find
nonmonotonic constitutive curves that are shear thickening. We show that the presence of one
nonmonotonicity does not imply the other. Instead, there exists a signature in the volume fraction
measured under fixed pressure that, when present, ensures nonmonotonic constitutive curves at fixed
volume. In the context of dry granular flow we show that gradient and vorticity bands arise under fixed
pressure and volume, respectively, as implied by the constitutive curves. For wet systems our results are
consistent with a recent experimental observation of shear thinning at fixed pressure. We furthermore
predict discontinuous shear thickening in the absence of critical load friction.
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Dense granular packings, both dry and suspended in
liquid, are among the most abundant materials on Earth.
They are relevant to manifold geophysical phenomena, e.g.,
landslides and debris flows [1,2], and to industrial proc-
esses such as paste extrusion [3,4]. Understanding their
deformation and flow properties is thus of major practical
importance. It is also of fundamental interest in statistical
physics, fluid mechanics, and rheology [5–8].
For any complex fluid, a key rheological fingerprint is

the constitutive relation of shear stress σxy as a function of
shear rate γ̇ in stationary homogeneous shear. For granular
materials, there exist two paradigmatic protocols for
characterizing this relation. In the first (“fixed volume”)
[9–14], one fixes the sample volume V and measures σxy
(and sometimes the normal stress or normal stress
differences) as a function of γ̇ at a given particle volume
fraction ϕ. In the second (“fixed pressure”), one fixes the
external pressure (usually in fact the normal particle stress
σyy, but see Ref. [15]) and allows ϕ to vary while measuring
σxy as a function of γ̇.
In the fixed-V protocol, dry systems display distinct

quasistatic, intermediate, and inertial flow regimes depen-
dent on γ̇ and ϕ [11]. In suspensions the inertial regime is
replaced by a viscous regime [16,17]. Hysteresis is often
observed close to the jamming volume fraction ϕm that
marks the transition between quasistatic and inertial or

viscous regimes, suggesting that the constitutive curve
σxyðγ̇Þ has a shear-thickening, S-shaped nonmonotonicity.
In the unstable region σxy can adopt multiple values at a
single γ̇ [18–20], implying a predisposition to vorticity
banding [21].
In the fixed-σyy protocol, experimental data for the

macroscopic friction μ ¼ σxy=σyy across a range of scaled
shear rates (“inertial number”) I ¼ γ̇a=

ffiffiffiffiffiffiffiffiffiffiffi

σyy=ρ
p

[22] sug-
gests universal constitutive relations μðIÞ and ϕðIÞ in dry
systems [23,24]. Here a and ρ are the particle radius and
density. Recent innovations enabling fixed-σyy measure-
ments in suspensions [25,26] remarkably suggest analo-
gous relations μðJÞ and ϕðJÞ, with J ¼ ηγ̇=σyy now the
“viscous number,” where η is the solvent viscosity [25,27].
In slow shear (small I, J), μ was shown to decrease with
increasing I in dry simulations [28] and experiments [29]
(see also [30–33]), and likewise suggested to decrease with
increasing J in experiments on wet systems [34], before
increasing at large I, J. This gives a shear-thinning non-
monotonicity, in which γ̇ can adopt multiple values at a
single μ, implying a predisposition to gradient banding.
In this Letter, we advance the understanding of granular

rheology in three key directions. First, we demonstrate,
within a single model granular system, constitutive curves
that are nonmonotonic and shear thinning (thickening) at
fixed σyy (fixed V), and show a mapping whereby data can
be transposed between these two representations.
Significantly, we find that nonmonotonicity at fixed σyy
does not imply the same at fixed V, uncovering instead a
signature in the fixed-σyy curves ϕðIÞ [or ϕðJÞ] that, if
present, implies nonmonotonic σxyðγ̇Þ at fixed V. Second,
we show in the context of dry granular systems shear bands
with layer normals in the gradient direction at fixed σyy, and
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vorticity direction at fixed V, revealing a predisposition
toward heterogeneous flow consistent with the measured
constitutive curves. Third, we provide the first simulation
evidence for nonmonotonic μðJÞ in suspensions, recently
suggested experimentally [34], and show that discontinu-
ous shear thickening (DST) can arise at fixed V even in the
absence of critical load friction [35,36], hitherto considered
prerequisite.
Simulation—We simulate the Newtonian dynamics of a

packing of spheres of density ρ with bidisperse radii a and
1.4a (chosen to prevent crystallization [37]) using LAMMPS

[38–40]. Interparticle contacts are modeled as Hookean
with stiffness k, frictional with sliding coefficient μp ¼ 0.5,
and damped with normal and tangential restitution coef-
ficient 0.5. We verified that varying k over an order of
magnitude does not significantly change any of our results.
For wet systems we also implement pairwise lubrication
forces. Between any two particles α and β the leading term
for particle α is Fα

i ¼ ðκ=hÞninjðuβj − uαj Þ with κ a scalar
function of the radii [41], n the center-to-center unit vector,
uα and uβ the particle velocities, and h the surface-to-
surface distance. (Roman suffices denote Cartesian direc-
tions.) The force is truncated when h < 10−3a. For details,
see Ref. [40].
We impose simple shear of rate γ̇ ¼ ∂vx=∂y via Lees-

Edwards boundaries [42], with flow, gradient, and vorticity

directions x, y, and z. Our time unit τI ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

ρa3=k
p

and τV ¼
ηa=k in dry and wet systems, respectively, giving non-
dimensional shear rates γ̇d ¼ γ̇τI and γ̇w ¼ γ̇τV. The stress
is computed by averaging the tensor product of particle-
particle vectors and forces, and rescaled as Σij ¼ σija=k, so
that μ ¼ Σxy=Σyy, I ¼ γ̇d=

ffiffiffiffiffiffiffi

Σyy
p

, and J ¼ γ̇w=Σyy. Steady
state data are averaged over 30 realizations measured up to
10 strain units beyond the initial transient. Results are
independent of our time step, δt ¼ 0.01τI. The periodic box
size Lx;y;z ≈ 30a in Figs. 1 and 4, with elongated Ly or Lz

specified in Figs. 2 and 3.
To model the experimental protocols described above,

we perform simulations in two different modes. In one we
fix V (and so ϕ) and γ̇, measuring Σxy and Σyy in steady
state. In the other we fix γ̇ and introduce a set point normal
stress ΣSP

yy , at each time step updating Vðtþ δtÞ ¼ VðtÞ þ
αδtðΣyyðtÞ − ΣSP

yy Þ=ΣSP
yy and checking that this maintains

Σyy ≈ ΣSP
yy to excellent approximation. We set α ¼ 0.1

having verified that results are insensitive to this choice.
We then measure ϕ and Σxy in steady state.
Dry system—We start with the fixed-Σyy data.

Figures 1(a)–1(d) show constitutive curves μðIÞ and ϕðIÞ
obtained for several fixed Σyy by increasing γ̇d (and so
I ¼ γ̇d=

ffiffiffiffiffiffiffi

Σyy
p

) from left to right. Figure 1(e) shows that our
control scheme produces a stable Σyy over time. Viewed on
the coarse scale of Figs. 1(a) and 1(c), the rheology is
broadly consistent with that for hard particles, with master
curves for μðIÞ and ϕðIÞ following [22,25]. However, the

separation of μ and ϕ curves on the finer scales of Figs. 1(b)
and 1(d), and the anomalous ϕ curves in Fig. 1(c) (red
lines), shows a breakdown of this master scaling for larger
Σyy. The finite stiffness k in our model allows particles to
be slightly compressed, meaning the flow state is not
uniquely defined by I but depends separately on γ̇d and Σyy.
The μðIÞ curves obtained by increasing γ̇d at fixed Σyy are
then nonmonotonic, with a window of I over which
ð∂μ=∂IÞjΣyy

< 0 (pink boxes, Fig. 1), consistent with an
earlier result in 2D [28]. This suggests that flow at an
imposed global I in this window will form gradient shear
bands of differing γ̇d with layer normals along y.
Meanwhile, the ϕðIÞ data in Fig. 1(d) reveal dilation with
increasing γ̇d at fixed Σyy, with ð∂ϕ=∂IÞjΣyy

< 0.
In this regime, where the flow depends not on I alone but

on both γ̇d and Σyy, one can obtain constitutive curves at
fixed Σyy by varying γ̇d (as discussed so far) or at fixed γ̇d
by varying Σyy. To explore the latter, we show by the purple
line in Fig. 1(d) all data points with a single fixed γ̇d, now
across data for different Σyy. Doing so reveals another
nonmonotonicity, highlighted by the green boxes in Fig. 1,
with a window of I for which ð∂ϕ=∂IÞjγ̇d > 0, which means
that increasing Σyy causes dilation. This will have important
implications for the fixed-V rheology, to which we now
turn.
Shown in Fig. 1(f) are time-dependent signals ΣxyðtÞ

measured at a given γ̇d for three ϕ. Beyond the γ̇t ≤ 1 start-
up transient, we observe a statistically steady Σxy for
ϕ ¼ 0.58, 0.61. In contrast, at intermediate ϕ ¼ 0.596
the stress intermittently switches between two apparently
metastable values, each sustained for 0.5–2 strain units.
Similar phenomenology was seen in [11], described there
as fluctuating rather than bistable behavior. Running our
simulation at ϕ ¼ 0.596 and imposed Σxy (using an
algorithm analogous to our fixed-Σyy one) led to flow
arrest at long times as reported previously [18,43], pre-
cluding fixed-V measurement of the unstable region. To
obtain a point (or points) on the stationary constitutive
curve from this ΣxyðtÞ signal at each γ̇d and ϕ, we produce a
histogram PðΣxyÞ by sampling at intervals of γ̇t ¼ 0.01,
and fit it to a single Gaussian for low and high ϕ, or a sum
of two Gaussians for bistable cases at intermediate ϕ. The
locations of the maximum (or maxima) of these fits are
taken as the time-averaged stress values, shown by solid
colored lines in Figs. 1(g) and 1(h).
We additionally obtain reconstructed fixed-V constitutive

curves from the fixed-Σyy data presented in Figs. 1(a)–1(d).
Each plotted point therein has known μ, ϕ, and I, with the
latter measured at known Σyy and γ̇d and with Σxy ¼ μΣyy.
We thus replot these data Σxyðγ̇dÞ and Σyyðγ̇dÞ as faded
colored lines in Figs. 1(g) and 1(h). Here Σyyðγ̇dÞ are
horizontal lines along which ϕ decreases monotonically
from left to right. Connecting points on each of these lines
that have equal ϕ, one obtains the solid gray and black

PHYSICAL REVIEW LETTERS 134, 038201 (2025)

038201-2



contours in Figs. 1(g) and 1(h). For low γ̇d we observe
inertial Σxy ¼ fðϕÞγ̇d2 rheology [11,44] for ϕ ≤ 0.593 and
quasistatic Σxy ¼ hðϕÞ for ϕ ≥ 0.605. For large γ̇d the data
tend toward intermediate Σxy ∼ γ̇d

1=2 behavior [11]. This
reconstruction produces constitutive curves that are S
shaped and show DST, consistent with the bivalued con-
stitutive curves obtained for 0.596 ≤ ϕ ≤ 0.599 in the fixed-
V simulation. The particle contact number grows toward its
isostatic point z ≈ 4 (for our μp) with increasing stress at
fixed V (data not shown). Importantly, this suggests a
different DST mechanism compared to critical load models
in which the isostatic point itself decreases with increasing
stress [35,36]. Indeed, the transition reported here links
inertial or viscous branches to quasistatic ones, as opposed
to linking frictionless and frictional viscous branches as
in [35,36].
We now show that these S-shaped Σyyðγ̇dÞ curves map

directly to a particular feature of ϕðIÞ in Fig. 1(d). Writing
ϕ ¼ fðγ̇d;ΣyyÞ, one can find the slope of fixed-V curves by
setting dϕ ¼ 0 and using the definition of I to obtain
ðdΣyy=dγ̇dÞjϕ ¼ ð2Σyy=γ̇dÞ½ð∂f=∂IÞjΣyy

�=½ð∂f=∂IÞjγ̇d � [45].
Thus if ð∂ϕ=∂IÞjΣyy

< 0 [blue-to-red lines, Fig. 1(d)], then
ð∂ϕ=∂IÞjγ̇d > 0 (purple line) implies downward sloping

fixed-V curves Σyyðγ̇dÞ. Indeed, the green boxes in Fig. 1
defined by ð∂ϕ=∂IÞjγ̇ > 0 coincide in Figs. 1(g) and 1(h)
with ð∂Σyy=∂γ̇Þjϕ < 0 (and ð∂Σxy=∂γ̇Þjϕ < 0). The same
conclusion may be obtained graphically, by taking a
horizontal line through Fig. 1(d) at, say, ϕ ¼ 0.598 (dark
gray line). One now finds three intersections with the
purple line, giving three stress states for a given γ̇d at
ϕ ¼ 0.598, implying S-shaped fixed-V constitutive curves.
Importantly, the pink and green boxes do not fully overlap,
so that nonmonotonic μðIÞ (pink) and Σxyðγ̇Þ (green) do not
imply each other.
So far, we have reported constitutive curves that are

nonmonotonic and shear thinning at fixed Σyy, implying a
predisposition toward gradient banding, and, in notable
contrast, nonmonotonic and shear thickening at fixed ϕ,
implying a predisposition toward vorticity banding.
Significantly, fixed-Σyy simulations with μp ¼ 0 produce
monotonic μðIÞ and ϕðIÞ. We now show that the observed
nonmonotonicities indeed lead to the formation of bands in
simulation boxes large enough to accommodate hetero-
geneity along the relevant axis. (The boxes simulated in
Fig. 1 are too small to do so.)

22 25

FIG. 1. Nonmonotonic constitutive curves of dry granular material at fixed Σyy (a)–(e) and fixed V (f)–(h). Shown are (a) μðIÞ and
(c) ϕðIÞ, respectively, enlarged in (b) and (d). Each curve of color blue to red has increasing γ̇d left to right at a fixed Σyy shown by the
legend in (a). Purple line in (d) connects points with γ̇d ¼ 4 × 10−6 and varying Σyy. Broad gray lines show fits of [22] (a) and [25] (c).
Our fixed-Σyy feedback algorithm maintains a setpoint ΣSP

yy ¼ 1.6 × 10−3 over time (e). In (f) are fixed-V time series of Σxy at γ̇d ¼ 10−5

for various ϕ. In (g) and (h) we first replot fixed-Σyy data from (a)–(d) as faded lines blue to red, then connect points of equal ϕ on these
curves by lines gray to black. This gives fixed-V constitutive curves, reconstructed from the fixed-Σyy data. Shown by darker red, green,
and blue lines in (g) and (h) are constitutive curves measured actually at fixed V, by binning time series of Σxy [shown in (f)] and Σyy as
described in the text. Shaded boxes in (b), (d), (g), and (h) cover regimes that have ð∂μ=∂IÞjΣyy

< 0 (pink) and ð∂ϕ=∂IÞjγ̇d > 0 (green),
transcribed across fixed-Σyy and fixed-V protocols.
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Figure 2 shows a simulation at fixed Σyy in a box
elongated along the gradient direction, Ly ¼ 1200a. The
stress Σyy is such that the μðIÞ curve for homogeneous shear
(in a smaller box) is nonmonotonic, Fig. 2(c). A global
shear rate ¯̇γd is then imposed so that I lies in its negatively
sloping part (black star). The time series of the y profile of
γ̇d then clearly reveals banding, Fig. 2(a). Binning the local
I values gives the histogram in Fig. 2(b), with peaks at I
values indicated by the blue and red stars in Figs. 2(b) and
2(c). These show that the low shear band is effectively
jammed (I ≈ 0) while the high shear band lies close to the
minimum of the homogeneous μðIÞ. The stress values
remain spatially and temporally uniform (not shown), with
μ in the banded state slightly below that in homogeneous
flow, Fig. 2(c). This may be due to nonlocal effects, which
are known to cause deviations from homogeneous rheology
that propagate distances Oð10Þa from yield planes [46].
Figure 3 reports a fixed-V simulation in a box elongated

along the vorticity direction, Lz ¼ 1200a, with ϕ ¼ 0.596
so that Σxyðγ̇dÞ is nonmonotonic, Fig. 3(c). A setpoint
global stress Σ̄xy (black star) is imposed near its negatively
sloping part via an algorithm that dynamically adjusts γ̇d.
The time series of the z profile of Σxy, Fig. 3(a) (and Σyy,
not shown), then also shows a stress band. This is not,
however, stationary but steadily propagates along z, con-
sistent with the balance of normal stresses precluding
stationary banding [47]. The ϕ profile is uniform through-
out, within the sensitivity of our measurement. Binning the
Σxy data gives the histogram in Fig. 3(b), with peaks at Σxy

values (pink and yellow stars) transcribed to the Σxyðγ̇dÞ
representation in Fig. 3(c). This finding is contrary to a
report in 2D dry systems of a homogeneous jammed state in
regions where Σxyðγ̇dÞ is expected to be downward sloping

[18]. Propagating vorticity bands were, however, seen
(albeit for wet systems with critical load friction) in [48].
Wet system—We show finally that constitutive curves for

wet systems have nonmonotonicities counterpart to those in
dry systems. Figure 4(a) shows that μðJÞ curves obtained
by varying γ̇w at fixed Σyy are nonmonotonic for a range
(albeit limited) of Σyy. The ϕðJÞ curve measured by instead
varying Σyy at fixed γ̇w is also nonmonotonic [purple line,
Fig. 4(b)]. This then maps to nonmonotonic reconstructed
S-shaped shear-thickening curves Σxyðγ̇wÞ and Σyyðγ̇wÞ at

FIG. 4. Nonmonotonic constitutive curves of wet granular
material. Shown in (a) and (b) are μðJÞ and ϕðJÞ; in (c) and
(d) are the same data along with reconstructed and actual fixed-V
data obtained equivalently to those in Fig. 1.

FIG. 3. Vorticity banding in dry system. (a) Strain series of Σxy
profile across z measured at fixed global ϕ ¼ 0.596 and
Σ̄xy ¼ 5 × 10−5. Binning temporal and spatial Σxy leads to the
histogram in (b). From its peaks we obtain the low (pink star) and
high (yellow star) Σxy values, plotted in (c) with those obtained
under fixed V and under the reconstruction [green and black lines,
Fig. 1(g)] at the same ϕ. Dashed black lines in (b) and (c) indicate
imposed global Σ̄xy.

FIG. 2. Gradient banding in dry system. (a) Strain series of γ̇d
profile across y, measured at fixed global Σyy ¼ 0.0016 and
¯̇γd ¼ 10−5. Binning temporal and spatial I data gives the
histogram in (b). From its peaks we obtain I in the low (blue
star) and high (red star) shear regions. These are then plotted as
μðIÞ in (c). Orange line in (c) represents the homogeneous μðIÞ at
Σyy ¼ 0.0016 from Fig. 1(a). Dashed black lines in (b) and
(c) indicate imposed global I.

PHYSICAL REVIEW LETTERS 134, 038201 (2025)

038201-4



fixed V in Figs. 4(c) and 4(d), as for dry systems.
Simulations performed actually at fixed V in this regime
likewise give bivalued constitutive curves [49], with a
viscous regime Σxy ∝ γ̇w for ϕ ≤ 0.58.
For dry systems, we recall that negative slope of the μ

curves at fixed Σyy (pink boxes, Fig. 1) does not automati-
cally imply negative slope of the Σxyðγ̇wÞ curves at fixed V
(green boxes). This lack of correspondence is even more
apparent in wet systems: little overlap is apparent between
the pink and green boxes in Fig. 4. Instead, as in dry
systems, the presence of negative slope in the constitutive
curves Σxyðγ̇wÞ at fixed V requires only that the material is
dilatant with respect to increases in both γ̇w and Σyy under
fixed Σyy. Grob et al. [18] give a criterion for the existence
of such points based on a simple model of additive stress
contributions to γ̇.
Conclusion—In this Letter, we have mapped the fixed-

Σyy and fixed-V constitutive curves of wet and dry granular
flows, shown the mapping between them, and demon-
strated their connection to shear banding. Our results
highlight the shortcomings of current constitutive models:
predictions for S-shaped Σxyðγ̇Þ exist, but do not predict
nonmonotonicity in μ [18,36,50] or incorporate quasistatic
flow. A phenomenological model encoding flow-induced
noise predicts nonmonotonic μðIÞ [28], though the dem-
onstration of nonmonotonic μðJÞ calls for an equivalent
mechanism to be identified in overdamped systems.
Further, our results challenge the present consensus by
showing that DST can arise in the absence of a critical load
model [35,36], with finite stiffness alone providing the
requisite stress scale. This informs an ongoing debate on
whether contacts of few asperities render deformations
relevant even for grains of large modulus [51–54].
Reconciling the rich banding dynamics reported here with
a detailed mechanistic description accounting also for
nonlocality [32,46] and boundary effects [55] is an open
challenge. Relating underlying constitutive curves to mea-
sured flow curves is a long-standing problem in complex
fluids, reinvigorated by our demonstration here that the
measurement protocol can radically change the observed
phenomenology. Further understanding the microme-
chanics at play is a fundamental challenge to statistical
and soft matter physics, and to developing rheological
constitutive models crucial to predicting macroscopic
engineering flows.
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