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Predicting the rheology of dense suspensions under inhomogeneous flow is crucial in many industrial
and geophysical applications, yet the conventional “μðJÞ” framework is limited to homogeneous conditions
in which the shear rate and solids fraction are spatially invariant. To address this shortcoming, we use
particle-based simulations of frictionless dense suspensions to derive new constitutive laws that unify the
rheological response under both homogeneous and inhomogeneous conditions. By defining a new
dimensionless number associated with particle velocity fluctuations and combining it with the viscous
number, the macroscopic friction, and the solids fraction, we obtain scaling relations that collapse data from
homogeneous and inhomogeneous simulations. The relations allow prediction of the steady state velocity,
stress, and volume fraction fields using only knowledge of the applied driving force.
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Introduction.—Dense suspensions are an important class
of soft matter system comprising Brownian or non-
Brownian particles mixed roughly equally by volume with
viscous fluid [1]. Their rheology attracts sustained interest
from physicists due to the manifold complex phenomena
that arise with apparently simple constituents [2,3]. These
include nonequilibrium absorbing state transitions [4], shear
thickening [5], thinning [6], and yield stress behavior [7].
As well as being of fundamental interest, characterizing this
complexity is key to the extensive use of dense suspensions
in various formulation and processing industries.
A useful model with which to build rheological under-

standing is the non-Brownian suspension [8], an especially
appealing system when one considers the case of inertialess
hard spheres. By analogy to dry granular systems [9], a
recent study successfully obtained constitutive laws for this
system [10], confirming their rate independence and find-
ing one-to-one relations between the volume fraction ϕ and
each of two dimensionless rheological quantities, the
viscous number J ¼ ηγ̇=P and the macroscopic friction
coefficient μ ¼ σxy=P. Here, η is the suspending liquid
viscosity, γ̇ is the shear rate, P is a measure of the particle
contribution to the normal stress, and σxy is the shear stress.
This important result, the so-called μðJÞ rheology, forms
the basis of subsequent models that introduce rate depend-
ence through additional stress scales [11,12].
The applicability of μðJÞ becomes limited when

considering inhomogeneous flows in which γ̇ varies

spatially [13–15]. In particular, the lower limit of μ (which
we denote μJ) is nonzero in homogeneously flowing
systems irrespective of the particle-particle friction coef-
ficient [16–18] but can by construction vanish when
mechanical balance dictates sign changes in σxy such as
along pipe center lines. In such scenarios regions that
would otherwise be jammed (i.e., with μ < μJ and J ¼ 0)
can have nonzero γ̇ thanks to facilitation by nearby flowing
regions [19,20]. This nonlocal effect has been extensively
studied in amorphous solids [21] and dry granular systems
[22], often by formulating a fluidity field with diffusive
behavior characterized by an inhomogeneous Helmholtz
equation. Microscopically it is conceptualized that the
fluidity originates from an activated process that diffuses
through the system in a cooperative way controlled by an
inherent length scale [19,21–24]. Recent works in dry
granular matter [25–27] interpret the fluidity in terms of
particle velocity fluctuations δu and density ρ, defining a
fourth dimensionless quantity Θ ¼ ρδu2=P and seeking
constitutive relations linking it to ϕ, μ and I [9] (the dry
counterpart to J). This successfully collapses data from
homogeneous and inhomogeneous simulations onto a
master curve, but is limited in that the Θ fields required
to make predictions thereafter must be obtained by sim-
ulation. Naturally such findings raise the question of
whether similar constitutive equations exist to unify homo-
geneous and inhomogeneous dense suspension rheology.
Here, we use particle-based simulation [28] to model

dense suspensions under homogeneous and inhomo-
geneous conditions, achieving the latter through an
imposed Kolmogorov flow following the approach of [19].
We seek to unify the rheology under both sets of conditions
by first defining a dimensionless suspension temperature
based on particle velocity fluctuations, as Θ ¼ ηδu=aP,
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analogous to the granular temperature [26], and then
obtaining relations among the four dimensionless numbers
ϕ, J, μ, and Θ. Although the μðJÞ framework was devised
based on frictional millimetric grains, recent experiments
demonstrate it is nonetheless applicable to frictionless
ones [29], and we focus here on the latter. Doing so we
find scalings that can collapse homogeneous and inhomo-
geneous rheology data onto a set of master curves that can
then be used to predict the rheology of other flow types.
Simulations details.—We simulate a suspension of fric-

tionless, non-Brownian spheres of radius a and 1.4a mixed
in equal number in a periodic box of dimensions Lx, Ly, Lz,
using LAMMPS [30,31] [see Fig. 1(a)]. Particles are sus-
pended in a density ρmatched viscous liquid, andwe impose
pairwise contact and hydrodynamic forces as described by
Ref. [18]. Briefly, the hydrodynamic lubrication force for
particles of radiiai andaj, with center-to-center vector ri;j, is
given by Fh

i;j ∼ ð1=hÞui;j, where ui;j is the relative normal
velocity of the particles and h ¼ ðai þ ajÞ − jri;jj.Fh

i;j is not
computed for h > 0.05a, and it saturates to ∼ð1=hcÞui;j for
h ≤ hc (with hc ¼ 0.001a), allowing particles to come into
contact. Contact forces arise only when jri;jj < ðai þ ajÞ
and are given by Fc

i;j ¼ k½ðai þ ajÞ − jri;jj�nij, where k is a
spring constant and ni;j ¼ ri;j=jri;jj. Particles additionally
experience dissipative drag due to motion relative to the
fluid, given by Fd

i ¼ 6πηaðui − u∞ðyiÞÞ, with ui the veloc-
ity of particle i and u∞ðyiÞ the liquid streaming velocity at
the position of particle i.
Flow is generated by specifying u∞ to induce particle

motion through drag. We obtain homogeneous rheology
data for fixed-volume systems of ϕ ¼ 0.48 to 0.65 by

generating simple shear via u∞ðyÞ ¼ γ̇yδx, with y the
direction of the velocity gradient and δx the unit vector
along x. We chose our parameters such that ργ̇a2=η ≪ 1

and γ̇
ffiffiffiffiffiffiffiffiffiffiffiffi
ρa3=k

p
≪ 1, recovering rate independence [10].

To obtain inhomogeneous flow we specify a spatially
dependent liquid velocity as u∞ðyÞ ¼ κ sin ð2πy=LyÞδx
[see Fig. 1(b), and the gradient γ̇∞ in Fig. 1(c)], and
later test the model with u∞ðyÞ ¼ κsin3ð2πy=LyÞδx. We
run simulations with Ly ¼ 50a, 100a, and 200a (with
Lx; Lz ¼ 20a) and systems containing Oð104Þ particles
(we verified that larger systems produce equivalent rheol-
ogy results). We simulated systems with mean volume
fraction ϕ̄ ¼ 0.5 to 0.635 (achieved by varying the particle
number), and κ is a constant with dimensions of velocity,
chosen so that the measured ργ̇a2=η remains < 0.01
throughout and particle inertia is negligible. The stress
(a symmetric tensor) is computed on a per-particle basis as
⅀i ¼

P
jðF�

i;j ⊗ ri;jÞ, counting both contact and hydro-
dynamic forces.
We aim to compare the spatially variant values of J, μ, ϕ,

and Θ obtained via inhomogeneous flow with the spatially
invariant ones obtained via homogeneous flow (the latter
follow closely our previous results [18]). Doing so requires
computing the variation in y of the stress and velocity fields
under inhomogeneous flow, which we do by binning
particle data in blocks of width a and volume
Vb ¼ LxaLz, with the per-block value of a quantity being
simply the mean of the per-particle quantities of the
particles with centers lying therein. We compute the
velocity fluctuation (necessary for calculating the Θ field)
of each particle as δui ¼ jui;x − u†i;xj, where ui;x is the x

(b) (c) (d) (e) (f) (g)(a)

FIG. 1. Inhomogeneous flow of a frictionless dense suspension. Shown are (a) a typical configuration of the system for ϕ̄ ¼ 0.60, with
the red region highlighting a coarse-graining box; and the steady-state profiles in y of (b) the x components of the externally applied
liquid velocity field u∞x (green line) and the coarse-grained velocity field of the particles ux (red points). Velocity is presented here in
units of κ. (c) The expected shear rate for a Newtonian fluid γ̇∞ ¼ ∂u∞x =∂y (green line) and the measured shear rate γ̇ (red points), both in
units of κ=a. (d) The velocity fluctuations δu in units of κ. (e) The local volume fraction ϕ, noting that the higher values at low γ̇
demonstrate particle migration has taken place. (f) The normal stresses σii and pressure P expressed in units of ηκ=a. (g) The shear stress
σxy computed from the particle interactions (red points) and by integrating over the left-hand side of Eq. (4) (green points), in the same
units as P.
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component of ui and u†i;x is the average x velocity of all
particles with centers lying in a narrow window �ϵ [taking
ϵ ¼ Oð0.1aÞ] of y, and we then bin δui per block. As all
three components of the velocity fluctuations are sta-
tistically equivalent we have used only the x values to
compute Θ. In what follows we report steady-state data
only [32], averaging across six realizations and at least 500
configurations per realization.
Results.—Shown in Figs. 1(b)–1(g) are, respectively,

steady-state profiles in y of the coarse-grained velocity (in
x) ux, shear rate γ̇ ¼ ∂ux=∂y, velocity fluctuations δu,
volume fraction ϕ, normal stresses σii, and pressure
P [¼ ð1=3ÞTrð⅀Þ], and shear stress σxy, for ϕ̄ ¼ 0.60,
with each plotted point representing a block. Although at
initialization the particle density is homogeneous [i.e.,
ϕ ≠ ϕðyÞ], in the steady state ϕ exhibits spatial variation
set up by particle migration to balance the normal stress σyy
[13,14,33]. The velocity profile follows a similar trend to
the applied force, as expected, but is flattened at the regions
of largest ϕ leading to significant deviations between γ̇ and
γ̇∞. The pressure becomes spatially uniform and is weakly
anisotropic (with the anisotropy vanishing when μ < μJ),
and the shear stress follows the shear rate in sign. Since P is
spatially invariant in the steady state, one can deduce that
the variation of the quantities ηγ̇=P, σxy=P, and ηδu=aP
follow γ̇, σxy and δu, respectively.
We analyze inhomogeneous data by computing the

dimensionless control parameters in each block, defining
the scalar shear rate and stress components on the
basis of invariants of the respective tensor quantities so
that J; μ > 0. This is done for a range of ϕ̄, with para-
metric plots of JðyÞ, ϕðyÞ, μðyÞ, and ΘðyÞ shown in
Figs. 2(a)–2(c). Each plotted point represents a y coor-
dinate, and colors represent different ϕ̄. Shown also (in
black) are homogeneous data. Reading across the data
points of a single color from right to left represents moves
from regions of high to low γ̇ in the inhomogeneous
domain.
The homogeneous local ϕðJÞ and μðJÞ relations follow

qualitatively the result of [10], though our frictionless
particles render ϕJ and μJ dissimilar. ΘðJÞ follows a
power-law relation, as in dry granular matter [26] though
with a different exponent (likely due to the presence
of hydrodynamics in our model). The finite J below μJ
[Fig. 2(b)] is a violation of μðJÞ rheology and is attributable
to nonlocal effects. We quantified the latter at ϕ̄ ¼ 0.63
by defining g ¼ J=μ [22] and fitting our data to
∂
2g=∂y2 ¼ ðg − glocÞ=ξ2, then extracting the length scale
ξ, Fig. 2(b) inset. ξ grows as μ → μJ [but remains OðaÞ]
demonstrating the heterogeneity of the flow. In general
large-J inhomogeneous data approximately match homo-
geneous local data when far from the yield point, though
they deviate with decreasing J, demonstrating the short-
comings of the existing constitutive laws when nonlocal

effects are important. Following [34] we further define a
length scaleM−1 ¼ Θ=∇Θ that saturates toM−1

loc at large μ,
J and, similar to ξ, grows as μ → μJ. We find [Fig. 2(c)
inset] a one-to-one relation between the departure of Θ and
M−1 from their local values Θloc,M−1

loc, thus reaffirming the
heterogeneity of the flow at small J and, interestingly,
indicating the equivalence of the local velocity fluctuations
and their gradients as measures of nonlocality.
With the help of scaling theory, we next seek constitutive

laws that simultaneously describe the rheology under
homogeneous and inhomogeneous flow. We focus first
on how the inverse viscosity J=μ ¼ ηγ̇=σxy vanishes as ϕ
approaches the jamming point ϕJ. This trend is followed by
all the homogeneous and inhomogeneous simulations,
leading to our first scaling relation

J=μ ¼ αðϕJ − ϕÞ2; ð1Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Relations between the dimensionless control parame-
ters. Shown are the relations between the viscous number J and
(a) the volume fraction ϕ for a range of homogeneous ϕ (black
data) and inhomogeneous ϕ̄, (b) the effective friction coefficient
μ, and (c) the suspension temperature Θ. Insets show the growing
length scales ξ (b) and M−1 (c). Also shown are the collapses
using the scaling Eqs. (1) [(d)], (2) [(e)], and (3) [(f)], for different
ϕ̄ and L. In (d) we show data for L=a ¼ 50 to highlight its
deviation from the scaling relation. Black triangles represent
homogeneous data (simple shear) and all other points are for
inhomogeneous flow at different ϕ̄.
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plotted in Fig. 2(d) with α ¼ 4.1 and ϕJ ¼ 0.6555. This
straightforward form relies on ϕJ being the maximal
flowable volume fraction irrespective of flow heterogeneity,
which is unlikely to be the case for frictional or elongated
particles [15].
The next scaling relation is inspired by [26], who exploit

an analogy to critical phenomena in the context of
correlated motion near jamming. While μðJÞ appears
somewhat uncorrelated in the inhomogeneous case [similar
to our Fig. 2(b)], they find a successful rescaling of μ with
Θ. This reveals that as Θ decreases at constant J, there is a
discernible trend of increasing μ, indicating that regions
characterized by higher velocity fluctuations exhibit better
flow. In our homogeneous data we find μ2.5 ∼ J [Fig. 2(b)]
and Θ1.44 ∼ J [Fig. 2(c)]. Since for the range of ϕ̄ explored
here inhomogeneous data follow homogeneous laws at
large J, we expect a scaling of the form μ2.5Θ1.44 ∼ F1ðJÞ.
Indeed this results in a good collapse as shown in Fig. 2(e),
in which data are described by the relation

Θ1.44μ2.5 ¼

8><
>:

βJ2 if J > 10−2;

ιJ1.73 if 10−3 ≤ J ≤ 10−2;

ϑJ1.33 if J < 10−3;

ð2Þ

with β ¼ 2.73, ι ¼ 1, and ϑ ¼ 0.04.
The final scaling relation is motivated by the relation

between granular fluidity and ϕ reported for dry granular
matter. Reference [25] write a nondimensional granular
fluidity g̃ ¼ gd=δu, where g ¼ γ̇=μ, and d is the spatial
dimension. We define an equivalent quantity in terms of the
previously discussed dimensionless numbers, namely
J=μΘ, though we find a better collapse is achieved through
a change to the exponents as

J
Θ0.8μ1.2

¼ F2ðϕÞ; ð3Þ

with F2ðϕÞ ¼ ϵ
�ðϕ − ϕfÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ − ϕfÞ2 þ ζ

q �þ λϕ [see

Fig. 2(f)] and ϵ ¼ −12.5, ϕf ¼ 0.62, ζ ¼ 0.0004 and
λ ¼ 1.54. Equation (3) suggests that J=Θ0.8μ1.2 is an effective
granular fluidity that vanishes atϕJ and is weakly varying for
ϕ < ϕf. We thus have three scaling relations, Eqs. (1)–(3),
that relate ϕ, J, μ, and Θ. The collapse appears poorer for
ϕ̄ ¼ 0.5 [Fig. 2(f)] and L=a ¼ 50 [Fig. 2(d)], indicating
limits to the range of applicability. An issue in the former case
may be that our simplified hydrodynamics, accounting only
for lubrication, becomes nonphysical at lower ϕ and that a
more highly resolved fluid field is required.
Given a profile of one of the dimensionless numbers, one

could therefore fully characterize the rheology of the
system. In our simulations, however, the only known input
is the externally applied force, which we recall is defined
through u∞. To use the scaling relations we need to
establish another relation that can provide us one of these

dimensionless numbers from the knowledge of the applied
force profile. Considering the inertia-free momentum
balance ∇ ·⅀ ¼ −f per unit volume, we write the follow-
ing equation for the kth block of the simulation cell [which
we verified in Fig. 1(g)]:

Nk6πηak½u∞x;k − ux;k� ¼ −
�
∂σxy;k
∂y

�
Vb: ð4Þ

Here, Nk, u∞x;k, ux;k, and σxy;k are the particle number in the
block, the liquid streaming velocity at the center of the
block, and the particle velocity and stress averaged over the
block, which has volume Vb. ak ≈ 1.2 represents a volume-
averaged particle radius at k. The left side of Eq. (4)
represents the net viscous force exerted by the fluid due to
drag, which is balanced by the net stress gradient inside the
block. Using the definition of our dimensionless numbers,
Eq. (4) can be rewritten for the streaming velocity at y as

u0∞x ðyÞ ¼
�Z

y

0

1

a
J�ðy0Þdy0 − 2a

9ϕðyÞ
�
∂μ�ðyÞ
∂y

��
; ð5Þ

with u0∞x ðyÞ ¼ u∞x ðyÞη=aP and asterisks representing
multiplication by sgn½γ̇∞ðyÞ�, noting that P is uniform at
steady state and using ϕðyÞ ¼ ð4=3Þπa3NðyÞ=Vb, acknow-
ledging our earlier comment about phase separation [32].
Equation (5) thus relates the externally applied liquid flow
field to the profiles of J, μ, and ϕ.
For a known u∞ we solve Eqs. (1)–(3) and (5) numeri-

cally in the following way. We first guess a ϕðyÞ profile by
assuming accumulation at points where the spatial deriva-
tive of the imposed force vanishes, starting with a simple
form as ϕðyÞ ¼ Pnp

j¼1 aj=½ðy − y0jÞ2 þ b2j � þ ϕ0, with mass

conserved through ϕ̄ ¼ ð1=LyÞ
R Ly

0 ϕðyÞdy. Here, y0j are
the coordinates of the point where the first derivative of the
applied force vanishes, np is the number of such points, and
bj is the width of the Lorentzian function peaked at y0j . We
then compute directly J, μ, andΘ using Eqs. (1)–(3), before
attempting to balance Eq. (5). The imbalance of Eq. (5)
reflects the accuracy of our guess. We refine ϕðyÞ by tuning
ϕ0, aj, and bj until Eq. (5) is satisfied (up to some
tolerance). Shown in Fig. 3 are predicted results compared
against “unseen” simulation data (i.e., data not used to
obtain the scaling exponents) with ϕ̄ ¼ 0.55, 0.57, and
u∞ðyÞ ¼ κsin3ð2πy=LyÞδx demonstrating the degree of
success of the scaling relations for predicting y profiles
of ϕ, J, μ, and Θ. Considering the highly nonlinear nature
of the scaling relations, the quality of the predictions is
reasonably good.
Conclusions.—Using particle-based simulation we seek

universality in flows of dense, frictionless suspensions.
Along with canonical control parameters ϕ, J, and μ, we
introduce a fourth quantity Θ characterizing velocity fluc-
tuations, inspired by dry granular physics [26].We find a trio
of scaling relations among these quantities that collapse data
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for homogeneous and inhomogeneous flow. Utilizing a
momentum balance we show that using the externally
applied force one can predict the features of a general
inhomogeneous flow. Our work raises manifold avenues for
future work. In particular, the microscopic origin of the
exponents is not understood, nor is their generalization to the
broader class of suspensions that includes polydisperse
particles (for which colloidal forces may become relevant
[35]), nonspheres, and complexities such as friction. In the
latter case Eq. (1) will certainly fail as the random loose
packing limit ϕrlp < ϕJ will become relevant, and, addi-
tionally, the validity of the quantity Θ as a measure of
nonlocality may depend on flow geometry [36].
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