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We develop a tensorial constitutive model for dense, shear-thickening particle suspensions subjected to
time-dependent flow. Our model combines a recently proposed evolution equation for the suspension
microstructure in rate-independent materials with ideas developed previously to explain the steady flow of
shear-thickening ones, whereby friction proliferates among compressive contacts at large particle stresses.
We apply our model to shear reversal, and find good qualitative agreement with particle-level, discrete-
element simulations whose results we also present.
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Dense suspensions of solid particles occur ubiquitously
in nature and industry [1]. Predicting their flow behavior is
essential both for understanding natural phenomena, such
as mudslides and silting of waterways, and for the design of
industrial products and processes ranging from paints and
pharmaceuticals to chocolate [2]. At high solid concen-
trations, the rheology of particle suspensions differs con-
siderably from that of a conventional Newtonian fluid. One
non-Newtonian effect in many dense suspensions is a
dramatic, often discontinuous, increase in viscosity with
shear rate, known as shear thickening [3,4].
Shear thickening is believed to originate in a crossover

from lubricated to frictional interparticle contacts [5–11],
governed by a competition between a soft repulsive
interparticle force F (of range ϵ ≪ a, with a the hard-core
particle radius), and the particle pressure Π ¼ −TrΣ=3
(with Σ the macroscopic particle stress tensor). At modest
Π, the force FðhÞ maintains finite separations h and
lubrication films are unbroken [12]. However Π rises
with the flow rate, and when it exceeds Π� ∼ F�=a2, with
F� ¼ sup½FðhÞ�, particles are pushed into frictional contact
(h → 0) and lubrication films break. Frictional contacts
constrain the particle dynamics, resulting in a rapid increase
in the suspension viscosity. This can cause continuous or
discontinuous shear thickening even though the underlying
contact statistics always evolve smoothly with stress [13].
This scenario has been confirmed by particle simulations,
using the so-called critical load model, wherein particles
experience Coulomb friction only when their normal
contact force exceeds a critical value [14,15].
Shear thickening has been studied mainly for steady,

homogeneous shear flow, whose behavior is well described
by the Wyart-Cates theory (WC). This addresses the shear
viscosity ηðϕ; _γÞ ¼ Σxy=_γ as a function of particle volume
fraction ϕ and shear rate _γ ¼ ∂yvx [13]. WC assumes, with
ηs the solvent viscosity and ν some constant,

η ¼ ηsνðϕJ − ϕÞ−2; ð1Þ

which diverges as ϕ → ϕJ from below, with η infinite
beyond. Crucially, the critical value ϕJ is stress dependent,
obeying [7,13,16]

ϕJðfÞ¼ϕJ
1ð1−fÞþϕJ

2f; fðΠÞ¼ expð−Π�=ΠÞ: ð2Þ

Here fðΠÞ is the fraction of contacts that are constrained by
friction to roll, rather than slide.
The jamming point ϕJ thus evolves smoothly from a

larger value ϕJ
1 at Π ≪ Π�, to a smaller value ϕJ

2 for
Π ≫ Π�. These limits are where frictionless and fully
frictional packings become rigid. In interpreting (1) and
(2) microscopically, WC effectively assumed that the
steady-state microstructure depends on ϕ only, which
therefore measures the proximity to jamming. (Below
we will need to find a more general, time-dependent
“jamming coordinate.”) This requires the microstructure
to be f independent, whereas in reality there could be a
slightly different steady-state microstructure for each f
value and hence for each strain rate [5,16].
The WC theory accounts for experimental and numerical

data for shear thickening in steady shear flow [7,16–18],
but makes no predictions for nonstationary flows, such as
the sudden reversal of steady shear. The latter gives direct
access to the statistics of direct interparticle and lubrication
forces: on reversal, direct repulsions can drop straight to
zero (in the ϵ ≪ a limit), whereas lubrication forces reverse
sign at fixed magnitude [19,20].
Extending the WC theory to nonstationary and/or non-

shear flows is clearly an important task, requiring the
development of a tensorial constitutive equation that relates
the material’s state of stress to its preceding flow history.
Building a new constitutive model is usually done first
by assuming time-dependent but spatially homogeneous
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flows; spatiotemporal dynamics can later be addressed via
additional terms involving spatial gradients. We take only
the first step here, noting that in other soft matter systems
the second step has followed only years later, see, e.g., [21].
Recently, two of us (Gillissen and Wilson, GW) con-

structed a constitutive equation for the rheology of rate-
independent suspensions [22,23]. Rate independence, in
which all stress components are linear in _γ, arises when the
frictional contact statistics are independent of flow rate:
f ≠ fðΠÞ. In this Letter we build on that work to obtain a
constitutive model for shear-thickening materials, exploit-
ing the simplification already made by WC that micro-
structural evolution is friction-independent. On the other
hand, we allow the instantaneous relation connecting the
stress tensor to the microstructure and flow rate to depend
strongly on friction. Shear thickening is then captured
by judiciously combining GW and WC precepts, as we
describe next.
Rate-independent theory.—An evolution equation for

the second rank microstructure tensor hnni was derived
in [22] from the advection equation for the distribution
function ΨðnÞ of contact vectors n between neighbors. The
unit vector n does not distinguish lubrication from direct
forces; insteadΨðnÞ counts all particle contacts within some
coarse-graining shell that is thin compared to the particle
radius a and thick compared to the range ϵ of the direct
interparticle force FðhÞ. The GW equation reads [22]:

∂thnni ¼ L · hnni þ hnni · LT − 2L∶hnnnni

− β

�
Ee∶hnnnni þ

ϕ

15
½2Ec þ TrðEcÞδ�

�
: ð3Þ

Here Lij ¼ ∂jvi is the velocity gradient and vi the velocity.
The terms in L describe advection of n, while the β term
accounts for creation and destruction of particle pairs. The
compressive rate of strain Ec advects, into the coarse-
graining shell, an isotropic exterior distribution of non-
contacting particles, importing preferentially those along
the compression axis or axes. In contrast the extensional
rate of strain Ee advects the anisotropically distributed
existing contacts out of the coarse-graining shell, exporting
preferentially those along the extension axis or axes.
Since in relatively dense systemsΨðnÞ is relatively close to

isotropy [24], we follow GWand express the fourth moment
hnnnni in terms of hnni via the “linear closure” [25]:

hninjnknli ¼ −
1

35
hnmnmiðδijδkl þ δikδjl þ δilδjkÞ

þ 1

7
ðδijhnknli þ δikhnjnli þ δilhnjnki

þ hninjiδkl þ hninkiδjl þ hninliδjkÞ: ð4Þ

Equations (3) and (4) are closed equations for micro-
structural evolution under arbitrary homogeneous flow.

They merit several remarks: (i) an unknown, order-unity
coefficient in front of the ϕ term in (3) has been absorbed
into the overall normalization of hnni, which is allowed
because, after closure, the model is linear in hnni. This
normalization is in turn absorbed into the parameters
introduced in (5) below. (ii) Although β might depend
on f, we will take β constant so that the microstructural
evolution remains independent of Σ during shear thicken-
ing. (iii) Crucially, the model is nonlinear in E ¼ Ec þ Ee,
but separately linear in Ec and Ee; these uniquely decom-
pose E ¼ ðLþ LTÞ=2 into its positive and negative eigen-
parts. This piecewise linearity places the model outside a
linear class that was found inadequate for flow reversal
modeling [26], while avoiding the proliferating parameters
of general nonlinearity. Frame invariance remains encoded
in the advective terms of Eq. (3) [25]. (iv) Equations (3)
and (4) predict unphysical oscillations for β ≤ 3 in simple
shear flow [22,23], so we restrict to β > 3.
To complete their rate-independent model, GW adopted

an instantaneous relation between particle stress, micro-
structure and strain rate [23]:

Σ ¼ ηs½αEþ χEc�∶hnnnni: ð5Þ

Here the α term represents lubrication forces, and the χ term
represents direct interparticle forces [FðhÞ, hard-core
repulsions, and friction]; all tangential contributions are
omitted as subdominant [27]. Importantly, on flow reversal
Ec and Ee interchange, so that (5) captures the discon-
tinuous drop in particle stress as direct contacts, oriented
mainly along the previously compressive axis, suddenly
open. In contrast, as required by Stokesian reversibility,
the lubrication part changes sign at fixed magnitude on
reversal [19].
GW showed that Eqs. (3)–(5) predict qualitatively

correct results for stress and microstructure in suspensions
of rate-independent rheology, for both steady and reversing
flows [22,23]. The model also correctly predicts the
destabilizing effect of spheres on Taylor vortices [28].
Constitutive model for shear thickening.—Our task is to

marry these results for rate-independent materials to the
physics of shear thickening as described by WC theory
[13]. To achieve this we should allow the stress parameter χ
in (5) to depend on the fraction f of direct contacts that are
frictional, which evolves from mostly frictionless (f ≃ 0) to
mostly frictional (f ≃ 1) asΠ grows beyondΠ�. However it
is no longer possible to replace the dependence of viscosity
on microstructure with a dependence on ϕ − ϕJðfÞ as done
in (1) and (2). This is because the microstructure, unlike ϕ,
evolves in time.
We therefore need to identify within the model a

“jamming coordinate” ξ that estimates, for a given micro-
structure and flow, the system’s distance from a jamming
point ξJðΠÞ. One candidate for ξ is Trhnni which [up to a
prefactor, see remark (i) above] counts all contacts within
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the coarse-graining shell. But only a subset of these (those
within the range ϵ of direct interactions) are candidates for
becoming frictional, and the same coarse-grained micro-
structure could be near to, or far from, jamming depending
on the flow geometry [29].
Since these direct contacts are mainly orientated along

the compression axis or axes we adopt as our jamming
coordinate the contraction of the microstructure onto Ec:

ξ≡ −
hnni∶Ecffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec∶Ec

p : ð6Þ

We show below that, in particle simulations, ξ evolves
similarly to a coordination number Z that counts direct
(h < ϵ) contacts only. This Z might be an equally good
choice for the jamming coordinate [13], but it is not
calculable within our coarse-grained constitutive model.
The jamming point for ξ, denoted ξJðfÞ, must decrease

from a larger value ξJ1 to a smaller value ξJ2 as friction
switches on. Following (2) we write:

ξJðfÞ ¼ ð1 − fÞξJ1 þ fξJ2; fðΠÞ ¼ expð−Π�=ΠÞ: ð7Þ

To find the extremal jamming points ξJ1;2, we denote by
ξ∞ðϕ; β;LÞ the steady-state solution of (3), (4), and (6) at
given velocity gradient L. Supposing the critical volume
fractions ϕJ

1;2 to be known, as they are for simple shear
flows, we can then identify ξJ1;2 ¼ ξ∞ðϕJ

1;2; β;LÞ.
We finally assign the dependence of χ in (5) on ξ:

χ ¼ χ0ð1 − ξ=ξJÞ−2; ð8Þ

where the exponent −2 is justified by our particle simu-
lations [see Fig. 1(b)]. This is the same exponent as in (1),
so that ξ − ξJ emerges as a direct dynamical counterpart
of ϕ − ϕJ in WC theory. [Using Z − ZJ would entail a
different exponent in (8); see Fig. 1(c).]
Equations (3)–(8) define our constitutive model. They

contain the parameters ϕ, ϕJ
1;2, Π�, χ0, α, and β of which

the first four are already present in the WC theory—with
our χ0 replacing ν in (2). Thus our model extends the WC
predictions from steady shear to arbitrary, unsteady but
homogeneous flow, at the cost of just two new parameters.
Of these, α governs the lubrication stress, subdominant near
the frictional jamming point and omitted by WC. Time
dependence is controlled by β, which gives a strain scale for
structural evolution via (3). Although α and β depend on ϕ,
they should diverge only on approach to ϕ1, so are near
constant in the neighbourhood of ϕ2. For simplicity we fit
them below to simulation data at ϕ ¼ 0.56.
DEM simulations.—We now test our predictions against

simulations using the discrete element method (DEM)
[30,31]. We use equimolar bidisperse spheres with density
ρ, radii a and 1.4a, and volume fraction ϕ in a periodic box
at imposed shear rate _γ. These particles obey Newton’s laws

with short-range, pairwise (center-to-center unit vector n)
interactions. Lubrication forces [32] act at separations
below 0.05a; direct forces obey F ¼ knδn − ktt, for overlap
δ, stiffnesses kn and kt, and tangential displacement t. The
tangential force is restricted by a friction coefficient μ so
that jkttj ≤ μknδ. The suspension stress is found by sum-
ming all hydrodynamic and contact stresslets. Choosing
ρ_γa2 ¼ 10−3ηs and _γ ¼ 10−5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn=ð2ρaÞ

p
, we approach

inertialess, hard sphere conditions, and match experiments
on rate-independent rheology [5]. Shear thickening is
then added using the “critical load model” [14]: contacts
with F · n > F� have μ ¼ 1, others have μ ¼ 0. The
frictional crossover is then governed by a reduced shear
rate _γr ¼ _γηs=Π� ∼ ηsa2=F�. Results are averaged over
40 simulations, each containing 1500 particles. This system
size is large enough to give detailed microstructural
statistics but small enough to maintain uniformity of the
particle density [33]. To calculate ξ we take a coarse-
graining shell thickness set by the lubrication range
ð0.05aÞ, whereas Z is found by counting overlapping
particles only.
Steady-state results.—According to our model, for a

given material, the reduced viscosity ηr ¼ Σxy=ð_γηsÞ is a
function of _γr (defined above) and ϕ only. In a steady state,
where (1) works well [7,16], ηr should depend mainly on
the distance of ϕ from ϕJðfÞ, which varies with _γr via
fðΠÞ. We test this using our DEM data by plotting in
Fig. 1(a), on log-log axes, ηr against 1 − ϕ=ϕJðfÞ for various
_γr and 0.4 ≤ ϕ ≤ 0.64. With ϕJ

1 ¼ 0.644;ϕJ
2 ¼ 0.578, and

Π� ¼ 0.037F�=a2, there is good data collapse, with slope
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FIG. 1. (a) DEM results for ηr as a function of 1 − ϕ=ϕJ [where
ϕJ obeys (2)] for various _γr. Dashed line: slope −2. (b) The same
data plotted against 1 − ξ=ξJ. Dashed line: slope −2. (c) The
same data plotted against 1 − Z=ZJ . Dashed line: slope −4.
(d) Steady-state flow curve ηrð_γrÞ for ϕ ¼ 0.56. Solid line:
fitted model.
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of −2, confirming the exponent chosen in (1) above [13]. In
Fig. 1(b) the same data are plotted against 1 − ξ=ξJðfÞ, with
ξ; ξJðfÞ obeying (6) and (7). For these purposes, jamming
points ξJ1;2 ¼ 2.615, 2.069were found by plotting ξ againstZ
and reading off values for frictionless and frictional jamming
(Z ¼ 6, 4). The collapse quality is comparable to Fig. 1(a),
with the same exponent, confirming (8). A similar plot using
Z as the ordinate instead gives an exponent −4, see Fig. 1(c)
(for more on the Z–ϕ relationship see [34]).
Figure 1(d) compares our model with DEM results for a

steady-state flow curve ηrð_γrÞ, at volume fraction ϕ ¼ 0.56,
within the regime of continuous shear thickening.
Parameters Π� and ξJ1;2 ¼ 0.88, 0.78 were found as pre-
viously described, assuming ϕ1;2 ¼ 0.65, 0.57. [The latter,
found via ξJ1;2 ¼ ξ∞ðϕJ

1;2; β;LÞ, absorb a normalization—
see remark (i) above—so are not directly comparable with
simulation values.] The curve is well fit with α ¼ 120,
and χ0 ¼ 2.4. In choosing the above parameters, we hold
β ¼ 50; this is fitted to microstructural evolution data
following shear reversal, described next.
Shear reversal.—In this protocol the suspension is

sheared with negative _γ until steady state is reached; at
t ¼ 0 the flow is reversed. In a steady state, prereversal, the
contact vectors n are primarily aligned with the compres-
sion axis. On reversal, the compression and extensional
axes interchange. Extensional flow then pulls contacts
apart, decreasing both ξ and Z discontinuously. This is
followed by recovery, as contacts form again along the new
compression axis.
Figure 2(a) shows, for ϕ ¼ 0.56, the time evolution

of the jamming coordinate ξ, scaled by the frictionless
jamming point ξJ1, as a function of the forward strain
γ ¼ t_γ after reversal, for various reduced shear rates _γr.
(The limiting cases of _γr ¼ 0;∞ correspond to frictionless
and frictional rate-independent materials.) We set β ¼ 50 to
match the observed strain scale for recovery, giving the
model curve shown by the dashed line. Our model predicts
a single curve for ξðγÞ because it assumes that the micro-
structural evolution is not itself friction-dependent. This is
supported by the DEM data. Figure 2(b) shows Z in place
of ξ, giving similar behavior but indicating weak rate

dependence of the direct particle contacts, not resolved by
our model. Our rate-independent coarse-grained micro-
structure allows us to fit β without knowledge of the stress.
Time-dependent stress measurements can then test our
model with its parameters fixed by separate data drawn
from the steady-state stress and microstructural reversal
results [Figs. 1(a), 1(d), and 2(a)].
In Fig. 3 we show such a test, using DEM data for shear

viscosity after reversal. (Note that laboratory measurements
broadly agree with DEM [20,35].) Our model predicts that
upon reversal the viscosity ηr drops discontinuously, and
then recovers gradually to the steady-state value. It captures
remarkably well the DEM data, even though the actual
DEM dynamics at small strain scales is more complex: first
the direct contact stress drops to almost zero over a tiny
strain interval, followed by a surge in lubrication stress
at strains γ ≤ 10−2 caused by rapid separation of particle
pairs [36]. Without resolving this fast regime our model
captures well the subsequent evolution of both quantities: a
drop in lubrication stress over strains of order 0.2 is
compensated only later by the recovery of direct contact
stress, explaining the initial dip in the curves.
Normal stresses and anisotropy.—Alongside its ability

to treat dynamics, our model (unlike WC theory) predicts
the full stress tensor. Figure 4(a) shows results for the
normal stress ratios in steady shear as functions of shear
rate. The second normal stress ratio, ðΣyy − ΣzzÞ=Σxy, is
negative in both cases, as in experiments [37,38]. The
DEM results show an increase on thickening; our model
overpredicts the value and underpredicts this increase.
This reflects a general overprediction of microstructural
anisotropy in the model, causing too big a discontinuous
drop in ξ on reversal [Fig. 2(a)], and too negative a steady-
state value of hn1n2i=hninii [Fig. 4(b)]. A possible cause
is that, in modeling birth-and-death terms, (3) does not
account for the effects of steric hindrance in limiting
anisotropy. Note also that the first normal stress ratio
ðΣxx − ΣyyÞ=Σxy is weakly positive in the model with a
small change on thickening, but negative (and almost zero
when thickened) in DEM. However, this small ratio is
notoriously elusive for both prediction and experiment;
even its sign is controversial [37].
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FIG. 2. (a) Evolution of jamming coordinate ξ via DEM after
shear reversal for various reduced strain rates _γr at ϕ ¼ 0.56.
Dashed curve: prediction of the model for β ¼ 50. (b) Similar plot
for the coordination number Z via DEM.
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FIG. 3. Reduced suspension viscosity ηr after shear reversal, for
various reduced shear rates _γr at ϕ ¼ 0.56, computed with (a) the
DEM and (b) the constitutive model.
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Conclusions.—We have created a tensorial constitutive
model for shear-thickening suspensions in time-dependent
flows. Our model assumes rate-independent microstruc-
tural evolution [22], but introduces a time-dependent
jamming coordinate ξ that tracks the distance from a
jamming point ξJðΠÞ, encoding the proliferation of contact
friction at high particle pressure Π [13]. Marrying these
elements, and with parameters fit using separate data, the
model successfully predicts the time-dependent shear stress
after strain reversal—with a discontinuous drop as direct
contacts are lost, followed by a further gentle decline as
lubrication contacts weaken, before both types of contacts
rebuild and a steady state is restored. The model opens
several avenues for future work, such as an account of
how friction feeds back into the microstructure, and a better
account of saturating anisotropy, which should quantita-
tively improve its rheological predictions.
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