
PHYSICAL REVIEW E 110, 034901 (2024)

Rheology of bidisperse non-Brownian suspensions
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We study the rheology of bidisperse non-Brownian suspensions using particle-based simulation, mapping the
viscosity as a function of the size ratio of the species, their relative abundance, and the overall solid content.
The variation of the viscosity with applied stress exhibits shear-thickening phenomenology irrespective of
composition, though the stress-dependent limiting solids fraction governing the viscosity and its divergence
point are nonmonotonic in the mixing ratio. Contact force data demonstrate an asymmetric exchange in the
dominant stress contribution from large-large to small-small particle contacts as the mixing ratio of the species
evolves. Combining a prior model for shear thickening with one for composition-dependent jamming, we obtain
a full description of the rheology of bidisperse non-Brownian suspensions capable of predicting effects such as
the viscosity reduction observed upon adding small particles to a suspension of large particles.

DOI: 10.1103/PhysRevE.110.034901

I. INTRODUCTION

Suspensions of small particles, radius a ≈ 100 nm–10 µm,
form a class of complex fluids abundant in nature and industry
[1–3]. Their widespread use calls for detailed constitutive
characterization to enable reliable process design [4], espe-
cially in the dense regime where particles and fluid are mixed
roughly equally [5]. Under external deformation, these sys-
tems, which are apparently simple in composition, exhibit
complex rheology including yielding, shear thinning, shear
thickening, and jamming [5–7]. Recently this phenomenology
has been linked to microscopic physics, specifically con-
straints that control the relative translation and rotation of
interacting particle pairs [8–10]. Shear thickening, for exam-
ple, represents a crossover from unconstrained to constrained
tangential motion as the imposed particle stress σ exceeds a
threshold set by the repulsive force σ0 ∼ F0/a2 [11]. A mean-
field approach by Wyart and Cates [12] (WC) captures the
transition using a stress-dependent jamming volume fraction
φJ (σ ) interpolating between low (φ0) and high (φm) stress
limits, reproducing (in some cases quantitatively) the steady-
state rheology [8,13].

The above conceptual framework was devised based on
nearly monodisperse suspensions, and most numerical and
experimental works that seek to test it reflect this [13–17]. As
soon as significant deviations from monodispersity are consid-
ered, however, complexity emerges that is not captured by WC
[12]. In particular, adding a small quantity of small particles
to a system of large ones can reduce the viscosity under shear
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[4,18,19], yet in the reverse case when larger particles are
added to small ones, only an increase in viscosity is reported
[20–22]. Extending the understanding of constraint-controlled
rheology to suspensions with size-disperse particles is thus
a key open problem. Our approach addresses this challenge
in a model system of just two species. Even in this minimal
system, particle-size disparity can have a profound effect on
the rheology, which, with the exception of a few recent works
[16,23–25], has remained largely unexplored, particularly in
the context of the frictional interactions. Pednekar et al.
[24] demonstrated a rheological collapse for polydisperse and
bidisperse suspensions once the volume fraction φ is scaled
with φJ , while Malbranche et al. [23] found that the relative
viscosity ηr for bidisperse suspensions can be well predicted
by the usual power law ηr = (1 − φ/φJ )−2 extensively used
for quasimonodisperse dense suspensions [12–14]. Guy et al.
[16] showed that a simple model in which the fraction of
frictional contacts enters as a scalar quantity providing a linear
interpolation between jamming points fails when one consid-
ers the differing stress contributions from different pair classes
(large-large, large-small, and small-small). Further, Monti and
Rosti [25] linked the reduction in shear-thickening behavior
of bidisperse suspensions as compared to the monodisperse
case to an increase in φJ exhibited in the suspensions with
large size ratio, an idea we develop in this article. More re-
cently, Malbranche et al. [26] extended the universal crossover
scaling function for bidisperse suspensions originally pro-
posed based on an experimental dataset by Ramaswamy et al.
[27], demonstrating a collapse for both monodisperse and
bidisperse suspensions on the universal curve once scaled
with distance from the frictionless jamming for the respective
cases.
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A common feature of the above works is that the rheol-
ogy of size-disperse suspensions is governed by φJ , which
is controlled by (in the bidisperse case) the species size ratio
� = aL/aS , their volumetric mixing ratio α = NSa3

S/(NSa3
S +

NLa3
L ), and the particle friction coefficient μ [28]. Here NL

and NS denote the numbers of large and small particles with
respective radii being aL and aS . Farris [29] proposed a model
to predict the viscosity of a multimodal suspension based on
the idea that the finer particles behave as a liquid with vis-
cosity governed by their volume fraction, which was recently
adapted to polydisperse suspensions by Mwasame et al. [30].
Shapiro and Probstein [31] used bidisperse glass beads in
glycerin and demonstrated that increasing size ratio � leads to
higher φJ . Other studies have also shown a similar decrease in
viscosity for concentrated bidisperse suspensions as compared
to the monodisperse case for a constant φ [32–35].

Previous experimental [28,34,36] and numerical
[16,23,24,37–39] studies have shown that, for a constant
solids fraction φ, the relative suspension viscosity ηr

decreases with � at fixed α while varying nonmonotonically
with α at fixed �. This was explained on the basis of φJ

being nonmonotonic in α, for which several models have
been proposed [40–44] but a complete micromechanical basis
is lacking. In dry granular materials it is understood that φJ

depends on (�,α,μ) [45], and there have been attempts to
relate this to the fraction of smaller particles being rattlers
[45,46].

In this article, we systematically explore the role of bidis-
persity on the rheology of dense, non-Brownian suspensions
using an established simulation scheme [11,47]. We explore
� � 12, 0 < α < 1, and φ close to the jamming point. Us-
ing simulation data, we provide a micromechanical basis for
the well-known nonmonotonic dependence ηr (α) for a given
φ. We show that the nonmonotonic ηr (α) coincides with an
exchange of stress contribution dominance from large-large
(LL) contacts at small α to small-small (SS) contacts at large
α, while the stress carried by large-small (LS) contacts is
nonmonotonic in α and vanishes at the extremes. Combining
an ad hoc extension of WC [12] with a geometric model for
φJ (�,α), we obtain qualitative predictions of the rheology for
any bidisperse, shear-thickening, non-Brownian suspension.
For simplicity we chose a linear-mixture packing model of the
kind described by Yu and Standish [40] (YS), which takes as
its inputs only the size ratio of the species and the pure species
jamming points. Such a model provides the minimal necessary
components with which to obtain the nonmonotonicity of φJ

in species mixing ratio predicted by our simulation model,
but naturally it omits microphysical details such as lubrica-
tion, friction and the critical load. This choice is somewhat
arbitrary, though, since due to the modular combination of
models we propose one could, in principle, introduce here
any packing model relevant to a system of interest. Many
such models are present in the literature, one recent example
being by Anzivino et al. [42]. Using the model, we explore
practical settings where small additives are incorporated into
suspensions of large particles, rationalizing the counterintu-
itive finding that increasing φ can in some circumstances
reduce ηr . Meanwhile, adding large particles to a suspension
of small ones always enhances ηr , corroborating experimental
findings [21,22].

II. SIMULATION SCHEME

We model N = 6000 inertialess spheres for � � 6 (N =
12000 for � = 12) dispersed in density-matched Newtonian
liquid under imposed shear stress σ in a constant volume
Lees-Edwards periodic domain. Particles interact through
short-range hydrodynamic lubrication and contact forces and
torques. Forces on particles obey overdamped dynamics,
governed by a 6N-dimensional force (and torque) balance
between lubrication hydrodynamic (FH) and contact (FC)
forces as

�0 = FH(X ,U ) + FC(X ), (1)

where particle positions and velocities velocities are repre-
sented by X and U , respectively. In the standard Stokesian
dynamics method [48], the resistance matrix diverges as 1/h,
where h is the surface separation between particles. In our
work, we allow lubrication breakdown [49], permitting direct
contact between particles. To model the direct contacts be-
tween particles, we follow Cundall and Strack [50] and the
algorithm by Luding [51]. We make use of the lubrication
resistance [47] and hence do not use a dashpot explicitly. The
tangential Ft

C and normal contact Fn
C forces between particles

satisfy the Coulomb criterion, |Ft
C| � μ|Fn

C|, for compressive
normal forces. Here, we use μ = 1, which has been shown to
yield quantitative comparison with experimentally observed
rheology [9,10,47]. Rate dependence is introduced using the
so-called critical load model (CLM) [11,52], where frictional
force is activated above a threshold normal force F0 giving a
characteristic stress scale of σ0 = F0/a2 (here a is the particle
size in the monodisperse limit, and we follow Guy et al.
[14,16] and assume F0 to be independent of particle size so
that σ0 = F0/a2

s throughout). Such a stress scale originates
from an electrostatic double-layer interaction between par-
ticles from the polymer coating, as an example. The CLM
model can be considered a special case of Debye length λ

approaching zero.
Under imposed constant shear stress σ , the suspension

flows with the time-dependent shear rate γ̇ (t ), and we com-
pute the relative viscosity as ηr (t ) = σ/η0γ̇ (t ), with η0 being
the liquid viscosity. For high and low values of α (close to
their monodisperse counterparts) and high φ, the system is
close to jamming; a total of ten simulations were performed
for improved statistics. On the other hand, far away from jam-
ming conditions, five realizations were performed. Different
initial conditions were generated by placing the nonoverlap-
ping particles with different size ratios � and volumetric
mixing ratios α. We observe that the steady-state behavior,
within fluctuations, is insensitive to different realizations. Fi-
nally, rheology data shown in the following are averages of
ηr over 5 strain units at steady state after omitting the tran-
sient start-up flow, which lasts less than O(1) strain units.
We perform simulations for � = 2, 3, 4, 6, and 12 and α =
[0.05, 0.9]. For small values of �, we do not find a significant
system-size dependence N on our statistics; the average ηr

roughly stays the same by reducing the system size by half
(or doubling) the system size, whereas the standard deviation
reduces with increasing N . Further details about the number of
large and small particles present in our simulations are given
in Table I in the Appendix.
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FIG. 1. Effect of mixing small and large particles on the rheology of a model suspension with size ratio � = 4. Shown are (a) the relative
viscosity ηr as a function of the volume ratio of small particles α and the applied stress σ/σ0, at φ = 0.57. Red and green lines represent
common data sets across each panel, showing, respectively, ηr (α) for σ/σ0 = 100, and ηr (σ ) for α = 0.25. (b) ηr as a function of σ/σ0 at
fixed α = 0.25 for various φ. (c) ηr as a function of σ/σ0 at fixed φ = 0.57 for various α. (d) ηr as a function of α for various φ at fixed
σ/σ0 = 100. (e) ηr as a function of α for φ = 0.57 for various σ/σ0. (f)–(h) Snapshots of the simulation at φ = 0.57, σ/σ0 = 100, � = 4,
and (top-to-bottom) α = 0.9, 0.5, and 0.1.

III. RESULTS

Bidisperse suspension rheology. Figure 1 shows the effect
of α on the rheology for exemplar data with � = 4. We
present a map of (ηr, α, σ ) at φ = 0.57 in Fig. 1(a) showing
an overview of the behavior, with planar slices showing (b)
ηr (σ/σ0, φ) at α = 0.25; (c) ηr (σ/σ0, α) at φ = 0.57; (d)
ηr (α, φ) at σ/σ0 = 100; and (e) ηr (α, σ/σ0) at φ = 0.57. In
Figs. 1(f)–1(h) are snapshots of the simulation at α = 0.9,
0.5, and 0.1. In Fig 1(b), one observes canonical thickening
behavior, qualitatively similar to quasimonodisperse systems
showing a stress-mediated transition between two Newtonian
plateaus driven by activation of frictional contacts [14,15,52].
The viscosities of the plateaus increase with φ towards their
respective jamming points, i.e., frictionless φ0

J ≡ φJ (σ/σ0 →
0) ≈ 0.75 and frictional φ

μ
J ≡ φJ (σ/σ0 → ∞) ≈ 0.65 limits

(these numbers being sensitive to α, �, and μ). In Fig. 1(c)
we find that σ0 increases monotonically with α (since the
former is related to the particle size through σ0 ∼ F0/a2),
while the frictionless and frictional viscosities measured at
σ/σ0 = 0.01 and σ/σ0 = 100, respectively, show nonmono-
tonic dependence on α. The crossover of these flow curves is
a result of the combined effect of bidispersity on σ0 and φJ

and is not predicted by models that assume monodispersity.
Next, we present data in the ηr (α) plane. Figure 1(d) shows
ηr for σ/σ0 = 100 as a function of α for various φ. At fixed
φ, ηr first decreases with increasing α, reaching a minimum
before increasing again so that ηr (α = 0) = ηr (α = 1). In
the limits α = 0 and α = 1, the suspension is monodisperse

and exhibits identical rheology due to the size invariance of
non-Brownian suspensions (when σ/σ0 is 0 or ∞). The value
of α that minimizes ηr is insensitive to φ. The mentioned
behavior is consistent with the literature on flowing suspen-
sions [16,23,24,28,34,36–39]. However, none of the studies
explored jammed states. For φ � 0.58, the suspension near
the extrema α = 0 and α = 1 is jammed, and the window of
α for which ηr is finite decreases with increasing φ so that no
flow occurs at any α for φ � 0.65. Figure 1(e) shows ηr (α)
for various σ/σ0 at fixed φ = 0.57. For σ/σ0 = 100, ηr at the
large and small limits of α are equal, while for σ/σ0 � 5, ηr

is higher for small α (α → 0) as compared to larger values
(α → 1). This can be explained based on the relation between
σ0 and particle size a. Since σ0 ∼ 1/a2, σ0 increases with α

[Fig. 1(c)] so that the jamming point is governed by friction at
lower stress when particles are large.

Figure 2 shows the effect of � on the jamming points φ0
J

and φ
μ
J . In Figs. 2(a) and 2(b) are the variations of φ0

J and
φ

μ
J with α, for � = 2, 3, 4, 6, and 12, obtained by simulat-

ing the limits σ/σ0 → 0 (lubricated, frictionless state) and
σ/σ0 → ∞ (frictional state) for a range of φ and then fitting
the viscosity as ηr = (1 − φ/φ

{0,μ}
J )−2 [53]. Both φ0

J and φ
μ
J

vary nonmonotonically with α, with the dependence being
more pronounced for increasing �, which is consistent with
previous experimental and numerical findings. Also plotted
are φ

{0,μ}
J predictions as functions of α at various � following

the model of Yu and Standish [40], which produces jamming
point predictions based on geometry only. Interestingly the
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FIG. 2. Role of the particle-size ratio �. (a) Variation with α of φ0
J , the jamming point at σ/σ0 = 0, for a range of �. Solid lines with

points represent simulation data; dashed lines show model predictions [40]. (b) Variation with α of φ
μ
J , the jamming point at σ/σ0 = ∞, for a

range of �. (c) Snapshots of simulations with φ = 0.5, μ = 1, α = 0.5, and (left to right) � = 2, 3, 4, 6, and 12.

model works better for the frictionless limit (φ0
J , σ/σ0 = 0)

as compared to the frictional one (φμ
J , σ/σ0 = ∞), likely due

to the absence of friction and shear-induced structure in the
theory. (Indeed, understanding the disparity in the nature of
jamming between frictionless and frictional systems remains
an open challenge [54].) In the frictionless case, the simu-
lation data appear to be converging toward the theory for
larger values of α > 0.4. Though for smaller values of α,
discrepancies can be observed. It is also important to mention
that testing this for larger � rapidly becomes computationally
intractable. Plotting ηr as a function of σ/σ0 for different � at
fixed α = 0.5 and φ = 0.57 [Fig. 2(c)], one finds the viscosity
of both limiting states decreases with increasing �, as the
proximity to jamming is decreased.

Contribution of different contact types. We next address
the microscopic underpinning of the nonmonotonic ηr (α)
reported in Fig. 1 (see also Refs. [16,23,24,28,34,36–39]).
In the literature, this behavior has been explained based on
the nonmonotonic behavior of φJ (α), making the distance
to jamming (φJ − φ) and thus ηr to be nonmonotonic at a
given constant φ. We use simulation data to separate the stress
contributions of different types of contacts LL (large-large),
LS (large-small), and SS (small-small). Figure 3(a) shows the
viscosity contribution of each contact type scaled with ηr for
φ = 0.57 at σ/σ0 = 100 as a function of α for � = 4. In
the limits α = {0, 1}, ηr would be purely dominated by LL
and SS contacts with the LS contribution being zero in the
two limits. At small α, LL contacts provide the dominant
contribution to ηr , while SS contacts take over at large α as
expected. LL decay from 1 at α = 0 (by definition) to ≈ 0
for α � 0.6. SS contributions are minimal for α � 0.2 and
increase to 1 at α = 1. Notably, the value of α at which SS
contributions begin to increase and LL contributions vanishes

is not symmetric with respect to 0 and 1. The contribution
of LS is nonmonotonic and vanishes for α = 0 and 1 and
is maximal around α = 0.4 where it contributes ≈75% of
the overall viscosity. The LS contribution is the dominant
viscosity component for α ∈ {0.2, 0.75}. Generalizing these
findings for different values of φ, Figs. 3(b)–3(d) present ηr

as a function of φ for α = 0.15, 0.5, and 0.8 respectively. We
observe that, for small α = 0.15, the dominant contribution to
viscosity originates from LL contacts. The viscosity of large-
large particle contacts ηLL

r is nearly 2–3 orders of magnitude
larger compared to ηSS

r , while being only 2–3 times larger
than ηLS

r . On the other hand, for α = 0.8, ηSS
r is 2–3 orders of

a b

c d

FIG. 3. Viscosity contributions from each contact type. (a) Rel-
ative contribution ηX X

r to the total viscosity ηr of each contact type
(where SS, LS, and LL replace XX ) as a function of α, for φ = 0.57
and σ/σ0 = 100. (b)–(d) Total viscosity and its contact contributions
as a function of φ at σ/σ0 = 100 for α = (b) 0.15, (c) 0.5, and (d) 0.8.
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magnitude larger than ηLL
r . Hence, in the two extreme limits

of α, jamming originates from the dominant contributions
from LL and SS components, with LS contributions being
the second dominant one. LS components provide the major
contribution to viscosity for the intermediate case (α = 0.5),
followed by SS and LL components being the least significant
contributors to viscosity.

Constitutive model. Guy et al. [16] demonstrated that the
WC model and its variants [12,13] as postulated fail to repro-
duce the bidisperse rheology. Given the qualitative agreement
of the dependence of φ0

J and φ
μ
J on α and � with the YS

model (Fig. 2) and of ηr (σ/σ0) with the WC model in our
previous nearly monodisperse cases [9,13], we are motivated
to construct a combined model to capture the full behavior.

The conventional WC model assumes that the suspension
viscosity diverges at the stress-dependent jamming volume
fraction as

ηr (φ, σ/σ0) = [1 − φ/φm(σ/σ0)]−2, (2)

where φ0
J and φ

μ
J denote the frictionless and frictional

jamming volume fractions. The stress-dependent jamming
volume fraction φm(σ/σ0) is postulated as

φm(σ/σ0) = f (σ/σ0)φμ
J + [1 − f (σ/σ0)]φ0

J , (3)

with the fraction of frictional contacts being expressed as
f (σ/σ0) = exp(−σ0/σ ). Here σ0 is the onset stress for
thickening.

To extend the WC model to bidisperse systems, we let
φ0

J and φ
μ
J be functions of α and � as plotted in Figs. 2(a)

and 2(b). To incorporate particle-size dependence, σ0 is inter-
polated in an ad hoc way between small- and large-particle
limits as σ0(α) = F0/[αaS + (1 − α)aL]2. Substituting σ0(α),
φ0

J (�,α), and φ
μ
J (�,α) into Eq. (2), we propose

ηr (φ, σ/σ0,�, α) = [1 − φ/φm(σ/σ0,�, α)]−2. (4)

We note that plotting three-dimensional data together with the
model becomes difficult to interpret, and hence only the con-
stitutive model is presented. Using this model we can predict
the effect on the rheology of compositional changes. As small
(or large) particles are added to an initial suspension of large
(or small) particles, α increases (or decreases) accompanied
by an increase in φ. First, we consider in Figs. 4(b)–4(d) the
effect of adding small particles to a suspension of monodis-
perse large ones, for � = 4 in the frictional limit (σ/σ0 = ∞).
Here, colors indicate increasing initial volume fraction φ from
blue to black. Both α and φ increase with the number of
small particles. In the case of dense suspensions, ηr ideally
increases with φ, eventually diverging at the jamming volume
fraction [2]. Counterintuitively, for sufficiently large initial φ

(of large particles), the addition of small particles leads to a
decrease in ηr . Even though both φ and α increase as small
particles are added, the model predicts that the increase in φ

is slower than that of φm, and hence (1 − φ/φm)−2 decreases.
Conversely, the asymmetry in φm(α) means adding large par-
ticles to a packing of small ones leads, more intuitively, to
an increase in both φ and ηr [Figs. 4(e)–4(g)]. At intermedi-
ate σ/σ0, φJ interpolates between frictionless and frictional
values [Fig. 4(h)], and the range of α for which viscosity
reduction appears is broadened [Figs. 4(i) and 4(j)]. Re-
cent experiments have shown that adding large non-Brownian

FIG. 4. Constitutive model predictions. (a) Combining the WC
model for ηr (σ/σ0) with the YS model for φJ (α,�), one obtains
the rheology of bidisperse frictional suspensions. (b)–(j) Colors
represent different initial volume fractions φ with blue lines repre-
senting the lowest initial φ and black lines representing jamming
volume fractions φ

μ
J (α) and φm(α, σ/σ0). Colored arrows indicate

adding small (pink) and large (green) particles. (b)–(d) Adding small
particles to a monodisperse large-particle packing at σ/σ0 = ∞.
(b) Variation of φ and φm with α, and ηr plotted as a function of
(c) α and (d) φ. (e)–(g) Adding large particles to a monodisperse
small-particle packing at σ/σ0 = ∞. (e) Variation of φ and φm with
α, and ηr plotted as a function of (f) α and (g) φ. (h) and (i)
Adding small particles to a monodisperse large-particle packing at
intermediate σ/σ0, so that large particles are frictional and small ones
are frictionless. (h) Variation of φ and φJ with α, and ηr plotted as
a function of (i) α and (j) φ. Also shown in panel (h) in gray are φm

and φ0.

particles to a suspension of small ones leads to enhanced
thickening behavior [21,22], consistent with our prediction
[Fig. 4(e)] that doing so will always move the system closer
to its respective φm.

IV. CONCLUDING REMARKS

In this work, we have studied the rheology of dense bidis-
perse suspensions by extensive numerical simulations. The
simulations presented here consider lubrication hydrodynam-
ics interactions and repulsive normal contact forces, where
static frictional force is activated beyond a critical thresh-
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old. The rheological flow curves display rate-independent
rheology at small stresses (σ 	 σ0) followed by thickening
behavior. The shear-thickening behavior presented depends on
the overall volume fraction φ as well as packing properties
(�,α).

For a given large enough φ and �, discontinuous shear
thickening is observed around the extreme values of α, while
continuous shear thickening is observed for intermediate α.
Viscosity ηr shows a nonmonotonic dependence as a function
of α for a constant (φ, σ/σ0). We address this behavior by
separating the stress contributions from different types of
contacts, viz., large-large (LL), large-small (LS), and small-
small (SS) contacts. We find that at the extreme values of α,
viscosity is dominated by LL and SS contributions with the LS
contribution going to zero (by definition). The SS contribution
goes much more rapidly as compared to the decrease in SS
contribution. The LS contribution is nonmonotonic and carries
the majority of stress for intermediate α ∈ {0.2, 0.7} values.

We have shown that an existing constitutive relation for
rate-dependent rheology (WC [12]) can be combined in an
ad hoc way with a geometric model by Yu and Standish [40]
to obtain a qualitative picture of the rheology of bidisperse
suspensions, and further work is needed in this direction for
a quantitative comparison. We emphasize that using the geo-
metric model by Yu and Standish [40] is purely a choice; many
other models [41,42] should yield similar results, perhaps
yielding better qualitative predictions for specific systems.
Our ansatz for σ0(α) is not strictly in accordance with WC
[12], in the sense that the order parameter f can no longer rep-
resent the fraction of contacts that are frictional (see Ref. [16]
for more details), in the sense that we did not explicitly ex-
plore different types of frictional contacts (LL, LS, and SS
types). Nonetheless, our model predicts novelty in the rheol-
ogy that is present in reality but unaddressed by WC [12],
specifically that adding small particles to a system of large
ones can counterintuitively decrease the viscosity, whereas
in the opposite case adding large particles to small particles
always leads to an increase in ηr .

We show additionally that the nonmonotonic dependence
of relative viscosity ηr on α for constant φ (as reported by
Refs. [23,24,28,36]) can be understood by delineating the
stress contributions of each type of contact, and our results
suggest that the rheology at � = 12 is already close to the
� → ∞ limit, so the predictions made here will be useful
across bidisperse systems of arbitrary size ratio. The conse-
quences of these results for more complex systems, especially
polydisperse samples [30] in which colloidal forces may be-
come relevant [55], are broad. In particular, our results provide
a direction towards the limiting case of predicting the rhe-
ology of mixtures where larger additives are included in a
continuous background phase of much smaller particles [20].
Recent work by Pednekar et al. [24] demonstrated that the rhe-
ology of a polydisperse suspension (viscosity, normal stresses,
and particle pressure) can be represented by an equivalent
bidisperse suspension. This work was in parts inspired by
previous works by Desmond and Weeks [56] and Ogarko and
Luding [57] in dry granular jamming showing equivalence
in jamming behavior between polydisperse and equivalent
bidisperse systems. In this work, although we have focused on

the model systems of two species, the results can be used to
qualitatively predict the rheology of polydisperse suspensions,
which has many applications: industrial processing of slurries
and muds, manufacturing of amorphous solid dispersions, and
predicting the runout of geophysical flows comprising grains
spanning many orders of magnitude [58].

Codes and scripts necessary to reproduce the results re-
ported in this article are available on request.
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APPENDIX: NUMBER OF PARTICLES
IN EACH SIMULATION

Shown in Table I are the total number of particles and the
number of large particles for each simulation reported in this
article.

TABLE I. Details of system size and number of large particles in
the simulation performed in this work.

Size ratio (total
number of
particles)

Volumetric mixing
ratio

Number of large
particles

2 (6000) 0.05 3177
2 (6000) 0.1 2489
2 (6000) 0.5 668
2 (6000) 0.8 183
2 (6000) 0.9 83

4 (6000) 0.05 917
4 (6000) 0.1 741
4 (6000) 0.5 93
4 (6000) 0.8 24
4 (6000) 0.9 11

6 (6000) 0.05 486
6 (6000) 0.1 241
6 (6000) 0.5 29
6 (6000) 0.8 8
6 (6000) 0.9 2

12 (12000) 0.05 132
12 (12000) 0.1 63
12 (12000) 0.5 29
12 (12000) 0.8 3
12 (12000) 0.9 3
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