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Abstract

Dense suspensions of particles are relevant to many applications and are a
key platform for developing a fundamental physics of out-of-equilibrium
systems. They present challenging flow properties, apparently turning from
liquid to solid upon small changes in composition or, intriguingly, in the driv-
ing forces applied to them. The emergent physics close to the ubiquitous
jamming transition (and to some extent the glass and gelation transitions)
provides common principles with which to achieve a consistent interpreta-
tion of a vast set of phenomena reported in the literature. In light of this, we
review the current state of understanding regarding the relation between the
physics at the particle scale and the rheology at the macroscopic scale. We
further show how this perspective opens new avenues for the development
of continuum models for dense suspensions.
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Figure 1

1. INTRODUCTION

Suspensions of particles in liquid are found throughout nature and industry, with examples rang-
ing from mud, magma, and blood to cement, paint, and molten chocolate. Often solid and fluid are
mixed in roughly equal proportion, leading to a thick or pasty consistency (see Figure 14). The
widespread use of these dense suspensions is enabled by extensive experimental characterization
and empirical modeling of their mechanical behavior, or rheology, allowing one to estimate, e.g.,
the thickness of a poured coating, the energy required to stir a slurry, or the extent of a mudslide.
Nonetheless, there are so far no accepted continuum theories; we have not yet identified the
dense suspension analog of the Navier-Stokes equations. Doing so requires us to understand
the relationship between composition and material properties, that is, to develop a physics of
suspensions.

"This effort has a rich and extensive history, dating back at least to Einstein (1). The physics of
suspensions has long been seen primarily as a fluid mechanical problem, in which the dynamics
are dominated by viscous stresses induced by the presence of particles. This perspective led to
Batchelor’ (2) successful theory for dilute suspensions of solid volume fraction ¢ < 0.1. More con-
centrated suspensions, however, display behaviors that have proven elusive to the fluid mechanical
approach, in particular their tendency to transition reversibly from liquid to solid depending on
the applied stress. Ketchup, for instance, will only flow out of the bottle under large stresses,
whereas cornstarch suspensions (cf. Dr. Seuss’s Oobleck) will only flow smoothly under small
stresses.

The reminiscence of phase transitions motivated the development of near-equilibrium sta-
tistical mechanics approaches (notably mode-coupling theory) to some of these problems in the
2000s, often attributing the emergence of solidity to a glass transition (see, for instance, Refer-
ence 3). While this approach proved a powerful tool for colloidal suspensions, in many cases the
particles are too large to be significantly influenced by Brownian motion; these suspensions are
far from equilibrium. More recently, researchers started to explore an analogy between dense sus-
pensions and dry granular materials, which at the macroscopic scale led to a highly influential
constitutive law, the 1(J) rheology (4). This further triggered intense interest in the microscopic
parallels between these two materials, particularly in the role of particle contact forces and as-
sociated friction in the stress of dense granular suspensions. The present review centers mostly
on the recent developments of this approach, and how a coherent physics of dense suspensions

Dense suspensions. (#) A particle-laden film comprising 250 um—450 pm glass beads in glycerol. () A model system of 1.4 um
monodisperse silica spheres. (¢) Calcium carbonate particles of approximately 5 pm, with irregular shape. Panel # adapted with
permission from Reference 9; copyright 2005 American Physical Society. Panel # adapted with permission from Reference 10;
copyright 2018 The Society of Rheology. Panel ¢ adapted with permission from Reference 11; copyright 2017 Rheologica Acta.

98

Ness o Seto » Mari



Annu. Rev. Condens. Matter Phys. 2022.13:97-117. Downloaded from www.annualreviews.org
Access provided by Universite Grenoble Alpes on 03/13/22. For personal use only

is emerging from it. As we discuss below, the rheology of a dense suspension is intimately linked
to an underlying out-of-equilibrium transition known as jamming, which occurs when the solid
volume fraction ¢ reaches a critical value ¢y. By accounting for the proximity of ¢ to this critical
value, which, crucially, is stress dependent through many aspects of particle-level physics, one can
understand broad spectra of rheology in a consistent way.

Dense suspensions are a mainstay of soft matter science: Understanding their physics is crucial
in many industrial settings and is of fundamental relevance. This (necessarily short and incom-
plete) review aims to equip the reader with an intuitive starting point from which to tackle the
vast and varied physics of dense suspensions. Each of the topics covered deserves its own detailed
review—indeed many of these have been written and will be cited (see, e.g., 5-8). In what fol-
lows, we first outline the pertinent features of dense suspensions. We then introduce jamming in
Section 3, before discussing in Section 4 how the macroscopic rheology is governed by micro-
scopic physics that sets the proximity to the transition. In Section 5, we show how microscopic
physics can be encoded in continuum models and then introduce some aspects of the fluid me-
chanics of dense suspensions.

2. WHAT ARE DENSE SUSPENSIONS?

Dense suspensions represent a large subset of complex fluids and can vary considerably in their
physical and chemical composition. Here, we briefly list the main sources of physical variability
and the characteristics that make a comprehensive description of their physics challenging.

2.1. The Particles

The particles may be stiff solids of arbitrary shape (see Figure 15,c) with crystalline or amorphous
structure, or they may instead be soft materials such as hydrogel particles or red blood cells.
We focus here on particles that can, to a first approximation, be considered rigid (Figure 24).
Although there are no strict bounds on the particle size #, we restrict the discussion to
0O(100)nm < 2 < O(1)mm. Such particles are orders of magnitude larger than their molecu-
lar constituents and can, in principle, be characterized using continuum mechanics concepts
such as their Young modulus. Crucially, though, they are usually not macroscopic bodies, and
nanometer-scale physics remains relevant. The marriage of macroscopic and microscopic physics
distinguishes their interactions from those between molecules.

Surface effects in particular play a major role in the interactions between particles (12).
Often surfaces are “dressed,” either by adsorbed molecules such as polymer brushes or by
ion—counterion double layers, providing repulsion (Figure 2b) at length scales typically in the
nanometer to micrometer range (5). At this scale surface roughness is also present, as are Van
der Waals forces (5). The former may allow the lubrication singularity to be violated; the latter
may introduce particle attraction (Figure 2c¢). To complicate matters further, concepts from the
physics of dry granular contacts, for instance, friction (Figure 2d), adhesion, and force chains (13;
Figure 2e), appear relevant (14). Sliding friction in particular has been observed at particle level in
systems varying considerably in their composition (15, 16), though its origin may differ from that
between macroscopic bodies. In both cases, surface morphology probably plays a central role, but
whereas for large bodies this creates multicontact interfaces with statistics leading to Amontons—
Coulomb law (17), for small particles contact through one or few asperities may be the norm
(dependent on the extent of contact deformation), giving rise to load-weakening friction (18, 19).
Combining all of these effects, the situation is sufficiently complex that there are no established
force models applicable across the size range of interest: Understanding how particles interact is a
challenge.
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Schematics of dense suspension microphysics. (#) A suspension of rigid particles; (b) repulsive interactions; (¢) attractive interactions;

(d) particle—particle friction, showing inhibited sliding (rough particles highlighting surface asperities, green arrows) and inhibited
rolling (faceted particles, red arrows); (e) a jammed state (force chains in orange); (f) hydrodynamics, showing lubrication (short arrows)
and drag (Jong arrows); (g) Brownian motion; (b) shear-induced structure showing particle contact forces (orange lines) under a shear flow
(streaming velocity shown in blue arrows); (i) particle migration (red arrows) under a shear rate gradient (blue arrows) with a gradient in
the magnitude of particle contact forces (orunge lines); and (j) free surface, showing curvature of the interface on the scale of the particle
size a, leading to capillary forces.

J

Brownian motion

Figure 2

2.2. The Fluid

The fluid, or solvent, is the main factor differentiating suspensions from dry granular media. It me-
diates hydrodynamic interactions (Figure 2f) and can be a simple liquid (e.g., water), a polymeric
fluid (e.g., filled thermoplastics), or a complex, multiphase fluid (e.g., the cement paste in fresh
concrete). In general these may have dissolved ions and molecules that influence the interactions
described above, via, e.g., a change of pH or dielectric constant. Here, we focus on Newtonian
suspending fluids with constant viscosity 7y (see the sidebar titled Basic Rheological Quantities)
and density pf. The fluid contributes a dissipative stress scale n¢y (for shear rate y) and ensures

BASIC RHEOLOGICAL QUANTITIES

m Flow field: The velocity field in the suspension #. A uniform flow is one in which Va is spatially invariant. For
instance, a simple shear with rate y such that u, = yy is uniform and has velocity gradient (Vat)op = 8084

m Strain rate: The tensorial quantity £ defined as the symmetric part of the velocity gradient: £ = (Vau +
Vu')/2. For a simple shear, E,p = 9 (8028py + 8aydp2)/2-

m Stress: The tensorial quantity ¥ describing the force per unit area acting on the suspension. We write a
general shear stress as o.

m Viscosity: The relation between £ and the deviatoric part of X. For a Newtonian fluid at pressure p, the
viscosity 7 is a (single) scalar parameter, reflecting the material character: £ = —pI + 2n€.
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incompressibility of the system, which plays a major role at macroscopic scales (e.g., 20). Addi-
tionally, thermal fluctuations in the fluid velocity generate Brownian forces on particles, which is
especially relevant at the lower end of the particle-size range considered here (Figure 2g).

2.3. Crowded Conditions

Although it has no formal definition, a dense suspension is usually taken to be one with solid and
liquid mixed in roughly equal proportion. Under these conditions, the typical particle separation
is smaller than the particle size, and small strains may bring their surfaces into contact (or near-
contact). Short-range interactions such as pairwise repulsion/attraction are therefore important.
Meanwhile, long-range, many-body hydrodynamics are screened by intervening particles, and the
emerging consensus is that these are negligible in dense systems. Lubrication forces also remain
relevant at a quantitative level only (21). With increasing ¢, suspensions generically undergo a
jamming transition, described later, from a flowable state to a solid state in which particle contact
forces span the system. The exact nature of jamming is sensitive to particle-level details, but, as
we discuss below, it bears some features of a continuous transition. Our focus is primarily on
dense suspensions for which macroscopic behaviors are governed by physics associated with the
proximity to this jamming transition.

2.4. Out of Equilibrium

For the particle-size range of interest here, Brownian motion, which is the restoring force toward
equilibrium, may act over timescales comparable to, or longer than, a typical observation period.
This can be quantified by the Stokes—Einstein relation for the diffusion coefficient D = kg T/67 n¢a
(with kg the Boltzmann constant and 7 the temperature), leading to a diffusive timescale #>/D =
67 nsa® /ey T. For a small molecule this is #1071 s, and the local state is always very near equi-
librium. Meanwhile for a particle of radius # = 1 um in water at room temperature it is ~1 s.
The #* dependence ensures that in many practical conditions, where typical timescales are in-
deed on the order of 1 s, Brownian forces can be neglected when # > 1 pm. Suspensions of such
particles—these are called non-Brownian, athermal, or granular suspensions and are the focus
of much of this article—are thus practically always out of equilibrium. The exploration of con-
figuration space therefore occurs not by thermal motion but only as a result of external driving.
Consequently there is strong history dependence, and statements about macroscopic phenomena
must be associated with a characterization of the prior strain protocol. Without this, there is no
reference (equilibrium-like) state.

This out-of-equilibrium nature leads to non-Newtonian macroscopic stresses. For simple flu-
ids, which are Newtonian, normal and shear stresses are dominated by distinct physical mecha-
nisms: The former come from the stiffness of molecular interactions; the latter come from molec-
ular diffusion inducing momentum diffusion.

For suspensions, when describing the stress X, one can distinguish the fluid stress X coming
from the solvent (often a simple fluid for which the above considerations hold) from the particle
stress X, due to mechanical forces transmitted through the solid phase. With diffusion suppressed
(or at least as slow as the shear itself), both normal and shear particle stresses originate in particles’
inability to follow the fluid streamlines and their tendency to adopt a shear-induced structure
(Figure 2b). The particle (and, hence, the total) stress components are thus not independent of
each other as they are for a simple liquid.

These distinguishing features make dense suspensions unamenable to an equilibrium descrip-
tion. We therefore proceed by first giving an overview of the out-of-equilibrium phase transitions
necessary to understand their behavior.

www.annualreviews.org o Physics of Dense Suspensions



Annu. Rev. Condens. Matter Phys. 2022.13:97-117. Downloaded from www.annualreviews.org
Access provided by Universite Grenoble Alpes on 03/13/22. For personal use only

3. OUT-OF-EQUILIBRIUM PHASE BEHAVIOR

Borrowing concepts from dry granular physics, we first address the phase transition of major rel-
evance to much of the discussion that follows on non-Brownian suspensions jamming. We then
give brief overviews of two transitions associated with Brownian suspensions (the glass transition)
and suspensions of attractive particles, acknowledging that separate reviews should be consulted
for these important topics (22, 23).

3.1. Jamming Transition

We consider non-Brownian, neutrally buoyant, repulsive particle suspensions, which generically
transition from being flowable at low ¢ to being solid (and having a yield stress) at large ¢. These
limits are separated by a jamming transition, occurring at a critical volume fraction ¢y (0.64 for
monodisperse frictionless spheres) beyond which all motion is blocked due to widespread particle—
particle contacts (as sketched in Figure 2e). Above ¢}, a (quasi-static) strain can only occur by
deforming the particles, which is not possible when they are rigid. Jamming is not specific to
suspensions: It occurs in dry granular matter, emulsions, and other amorphous materials (24). It
shares some features with equilibrium continuous phase transitions, especially diverging length
scales, though other quantities, such as the number of contacts, may (depending upon the proto-
col; cf. the preparation dependence mentioned above) vary discontinuously across the transition
(25).

The location of the transition, i.e., the value of ¢y, is sensitive to many microscopic details and
also depends on the history of the sample (26). Most importantly, interparticle friction (quantified
with dimensionless coefficients), which constrains rotational as well as translational particle mo-
tion, strongly affects jamming. All friction modes (sliding, rolling, and twisting) contribute to a
decrease in ¢; (27), as does increasing the value of the friction coefficients. It is particle-shape (28,
29) and size-distribution dependent; broadening the particle-size distribution from monodisperse
to polydisperse leads to a larger ¢y (30, 31).

These observations can be understood in a unified way by considering the appearance of iso-
staticity. The suspension jams when just enough particle contacts form to constrain all degrees
of freedom in the system (32). This happens when the average number of contacts per particle
z reaches a critical isostatic value z.. In general, the value of z. can be inferred from apparently
simple Maxwellian constraint counting arguments (33), though this rapidly becomes involved for
cases more complicated than frictionless spheres, as each contact may constrain multiple degrees
of freedom (34). Below jamming, i.e., §2 = z. — 2 > 0, the system is underconstrained, and there
are N§z/2 floppy modes in a system of N particles. These modes represent collective degrees of
freedom along which the system can be deformed without elastic cost. Floppy modes are spatially
extended; due to the crowded conditions, moving a particle requires cooperative motion of other
particles in the vicinity.

Jamming has some features consistent with a continuous transition. Structural and mechanical
properties behave singularly as a function of the distance to jamming 8¢ = ¢; — ¢ (or equiva-
lently as a function of §z), and the associated exponents are often nontrivial (35, 36). In particular,
several length scales diverge at the transition. Their identification and role are slowly emerging,
with frictionless systems being better understood. The most relevant for this review is the cor-
relation length of the velocity field (37) (or the nonaffine velocity field in the case of a sheared
system), quantifying the cooperativity of motion in crowded conditions. Velocity correlations de-
cay to zero on a typical length scale / ~ §¢*, with numerical results for frictionless spheres giving
A =~ 0.6-1 (38). They can be quantitatively linked to the statistics of floppy modes, and scaling
theory predicts that / ~ 1/+/8z and A ~ 0.43 (36).
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This diverging length scale is central to the rheology close to jamming and is argued to be the
origin of a divergence in the suspension viscosity 7, occurring at ¢y (38). The physical picture is
that correlated motion leads to nonaffine velocities via a lever effect, which results in enhanced
viscous dissipation (39). The exact scaling relation (if any) between / and 7 is obscure, however,
even for frictionless spheres. In a caricature of correlated motion in which particles are grouped
in clusters of size / rotating as rigid bodies (40), equating for a cluster the injected power oy 2/
to the dissipated power oy 2al?? (with # the particle number density), one finds that 5 oc 2.
This is certainly too simplistic, however, as reaching ¢; from below the zero-shear viscosity (i.e.,
measured with infinitesimal shear stress) indeed diverges as n ~ (¢; — ¢)?, but with B being sig-
nificantly larger than 2, as we show in Section 4. Indeed, though eddies following approximately
a rigid-body motion have a size on the order of / and lead to the dominant decay of velocity cor-
relations, there may be a secondary decay on a much longer length scale due to flow-induced
contact anisotropy (41). The associated correlation length, diverging faster than / at jamming,
would account for the viscosity divergence. The jamming transition is thus key to understanding
the rheology of dense suspensions and forms a central part of our discussion in what follows, but
it is not the only relevant transition.

3.2. Glass Transition

Brownian systems similarly undergo a transition from a flowable to a nonflowable state when ¢
increases. This is the colloidal glass transition, occurring at ¢ (42), above which particles are
trapped in cages formed by their neighbors. The glass transition is distinct from jamming (43),
and we refer to other reviews for details about its phenomenology (44). The most relevant as-
pects for Brownian suspensions in this review are that (#) the transition occurs before frictionless
jamming, ¢ < ¢ (for low polydispersity rigid spheres ¢ ~ 0.58), (b)) below ¢ the zero-shear
viscosity diverges in a superexponential fashion, typically fitted with n ~ exp{4/(¢c — ¢)°} (to be
contrasted with the algebraic divergence at jamming), and (c) at ¢ a finite yield stress proportional
to kg7 (43) appears discontinuously (whereas at jamming the yield stress appears continuously).

3.3. A Note About Attractive Interactions

In the presence of attractive interactions, particles can stick together in clusters that eventu-
ally span the system, forming an elastic network with a yield stress (45). For Brownian systems,
competition between k37" and attraction leads to complex ¢ dependence (46). The resulting col-
loidal glass and gelation behavior is an extensive and challenging topic and is reviewed elsewhere
(see, e.g., 23). Meanwhile in non-Brownian systems the role of attraction near jamming is still
emerging (47).

In what follows, we replace our labels for ¢ and ¢ with a more general, stress-dependent
limiting volume fraction ¢,,(0), representing the value of ¢ at which the suspension viscosity n
diverges. This is often still a jamming point, but in the presence of Brownian or attractive forces
the divergence may have contributions from multiple phase transitions.

4. RHEOLOGY AND MICROSCOPIC PHYSICS

Having introduced the transitions that occur as ¢ approaches ¢,,, we now discuss how the prox-
imity to them is relevant in determining the macroscopic response, in particular the rheology
under uniform flow (conditions in which the strain rate is spatially uniform). In general, the sus-
pension viscosity n diverges at ¢ = ¢.,, and complex rheology can be understood as stress- or
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Figure 3

Dense suspension rheology, showing schematics (4, &, and upper panels of ¢, d, and e) and experimental data (lower panels of ¢, d, and e, with
nr = n/n¢). (@) Schematic relating the viscosity n(o, ¢) to ¢m(o). () Schematic showing qualitative ¢, (o) behavior in the presence of
one (blue and green) and two (red to magenta) characteristic stress scales, o1 and 0. (¢, 7) Schematic showing decreasing ¢m(0);

(¢, i7) experimental data showing shear thickening in a suspension of # ~ 260 nm silica particles in a polyethylene glycol solvent at three
different ¢. (d, /) Schematic showing increasing ¢m(0); (4, i) experimental data showing shear thinning in a suspension of # ~ 4 pm
ground calcium carbonate particles in a glycerol-water mixture at a range of ¢. (e, 7) Schematic showing ¢, (o) for (zop to bottonz)
increasing attraction; (e, i7) experimental data for a suspension of # ~ 90 pum soda-lime glass spheres in mineral oil at ¢ = 0.56. Shown
(bottom to top) are increasing applied electric field strengths, controlling attractive interactions. Panel ¢ adapted with permission from
Reference 61; copyright 2014 The Society of Rheology. Panel d adapted with permission from Reference 62; copyright 2021
Rheologica Acta. Panel e adapted with permission from Reference 63; copyright 2010 Springer Nature.

rate-controlled changes to the dominant microphysics, in many circumstances leading to stress
dependence in ¢, itself. Such a scheme is sketched in Figure 34. Here, we illustrate how a mono-
tonic ¢, (o) (the physics of which we consider below) leads naturally to distinct stress-dependent
viscosity divergences (whose form may follow, e.g., 7 ~ [¢m(0) — #]7#) and thus to rate-dependent
rheology n(o, ¢). Rather than following a top-down approach to addressing macroscopic phe-
nomenology, we instead consider systematically the microscale physics sketched in Figure 2. Our
focus is not on the origin of microscopic forces per se but rather on their effect on the rheology.
For experimental and computational methodologies—rheometry—we refer the reader to other
reviews (see, e.g., 48, 49). We take as our starting point the idealized case of rate-independent
suspensions (for which ¢, is independent of o) before addressing rheology that arises in more
complex cases, systematically examining physics one dimensionless parameter away from the rate-
independent case.
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4.1. A Reference Point: Rate-Independent Suspensions

Consider a dense suspension of non-Brownian, neutrally buoyant, rigid particles in a Newtonian
fluid, subject to a steady deformation slow enough that fluid and particle inertia can be neglected.
In practice this can be approximated with a suspension of ~10 pm glass particles in an appropriate
solvent under typical rheometric conditions. Such a system plays a special model role that has
proven to be hugely influendal in understanding many other classes of suspensions, as we discuss
below.

4.1.1. Dimensional analysis. The microscopic quantities involved in the problem are the typ-
ical particle size # and density p,,, and the fluid viscosity n¢ and density p¢ (with p, = pf). For rigid
particles there is no microscopic energy or force scale. The macroscopic quantities are the control
volume size L (this is taken to be sufficiently larger than # so that we consider bulk phenomena)
and the solid fraction ¢ therein. Finally, the deformation is characterized by its rate, y, the applied
stress, o, and the time for which it was applied, ¢. (This notation is conventional for simple shear,
but the following argument applies generally.) Dimensional analysis implies that there are four
dimensionless numbers besides ¢. Appropriate choices are the Stokes number, St = p,y4*/ns, the
Reynolds number, Re = pryL?/n;, the relative suspension viscosity, n, = n/n; = o /n¢y, and the
strain, y = yt.

As stated earlier, we take as our reference point suspensions for which particle and fluid inertia
can be neglected, corresponding, respectively, to St = 0 and Re = 0. We then conclude that 7,
must be a function of ¢ and y only. This is a strong statement: It implies that the stress is linear in
the deformation rate, as for a Newtonian fluid, and that the proportionality factor, the suspension
viscosity 1, only depends on ¢ and y. Furthermore, in steady state [the y — oo limit, in practice
typically achieved for y = O(1)], n, is a function of ¢ only.

This analysis (which follows Krieger; 50) can be extended to any component of the stress ten-
sor, though these do not each necessarily share the same parity with y. Although shear stresses
(or more generally the dissipative part of the stress tensor; 51) are linear in y, normal stresses,
which for a rate-independent suspension are always negative (pushing outward), are linear in |y|.
Depending on the system, the list of dimensionless numbers is augmented, most notably by the
particle friction coefficient(s). Recent measurements show that friction is indeed a generic feature
of direct contacts among micrometer (and larger) sized particles (15, 16), though the nondimen-
sionality of the coefficient ensures (assuming friction is Coulombic) that this alone does not in-
troduce rate dependence. This quasi-Newtonian result forms the basis for our discussion of more
complex, rate-dependent suspensions in what follows.

4.1.2. Rheology under steady flow. Under a steady imposed deformation rate tensor, rate-
independent suspensions can thus be characterized by a set of material functions (51) all depend-
ing on ¢ only. As expected from the discussion in Section 3.1, these are all singular at jamming,
typically behaving asymptotically as (¢, — ¢)~# (4).

Here, ¢,, typically represents a frictional jamming point (but see Section 4.4 below). Many
experiments (4, 52) as well as simulations of spherical particle suspensions (39, 53) are consistent
with B = 2, although quite different values have also been reported, with a possible dependence
on the sliding friction coefficient p,, (54-56). In a simplified model of frictionless sphere flow,
for which the exponent can be determined with higher precision thanks to efficient numerical
methods and to scaling theory linking 8 to other independently measurable exponents, one finds
B ~ 2.8 (57). For long rod-like particles, it has been experimentally measured as g ~ 1 (58).

This rheology can also be formulated from an alternative (but equivalent), particle-pressure-
imposed perspective. Boyer et al. (4) demonstrated (and verified experimentally) that in simple
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shear the stress anisotropy, or macroscopic friction coefficient, i.e., st (which in simple shear is
w = o /Py, with P, a measure of the particle pressure), and ¢ are functions of the so-called viscous
number J = n¢y /P, only. Knowing u(J) and ¢(J), we can use the fact that n/ns = u(J)/J and invert
the ¢(J) relation to recover the volume-imposed rheology, that is, a rate-independent viscosity
depending on ¢ only. Here, jamming corresponds to J — 0. In this limit, ¢(J) ~ ¢, —aJ'/# and
w(J) ~ w* + bJ (4), such that n ~ (¢ — ¢)#. Importantly, u* is finite, implying that particle
normal and shear stresses share the same asymptotics close to jamming. As with ¢,,, u* depends
on microscopic details. For frictionless (u, = 0) spheres, u* ~ 0.1 (59), whereas for u, 2 0.1,
w* ~ 0.3-0.4 (60). Interestingly, the large friction limits for pu* and ¢, occur at quite distinct
values of y1, (60).

4.1.3. Microstructure evolution and flow history dependence. For rate-independent sus-
pensions, statements about the macroscopic rheology must be associated with a description of
their strain history (though the rate at which this history was explored is unimportant). An initial
transient of a few strain units [y = O(1); 64] is generally observed upon flow start-up, after which
the memory of initial conditions is lost and particles have, thanks to shear-induced diffusion (65),
sampled a statistically representative part of the configuration space. Steady states (with y > 1) are
thus unambiguously defined, independent of the prior sample history, and are the usual reference
points for characterizing rate-independent rheology.

Dense suspensions usually exhibit microstructural anisotropy, details of which depend on the
deformation being applied (see, e.g., Figure 2b). This is often characterized at the level of the
statistics of some particle interaction director #, usually via its averaged second moment, referred
to as the structure, texture, or fabric tensor (n#z) (see also Section 5). During steady state flow, this
tensor is often found to be aligned with the deformation rate tensor (66, 67). The microstructural
anisotropy is mirrored at the macroscopic level by the stress anisotropy w, although their exact
relation remains elusive. For frictionless spheres near jamming, microstructural anisotropies bias
the floppy mode statistics in favor of flow-resisting modes, leading to larger u (36). Meanwhile,
first and second normal stress differences quantify, respectively, stress anisotropy in and out of the
flow plane (51, 54, 68).

Together, the finite transient in the strain (64, 69) and the shear-induced structure give rise
to an anisotropic stress response: The viscosity of a rate-independent suspension is largest when
the strain rate and microstructure tensors align. This is readily illustrated under unsteady flow
conditions such as shear reversal (64) and oscillatory shear (70). When the direction of the ap-
plied flow changes more rapidly than a steady microstructure can establish (i.e., accumulating
strains ¥ < 1 before reversal), the resultis a systematically lower viscosity than in steady shear. An
extreme case of this is the remarkable phenomenon of shear jamming (13, 71), in which a suspen-
sion is jammed under a previously applied deformation, but not jammed with respect to others.
Separately, the behavior under repeated reversals reveals, for sufficiently small strain amplitude,
contact-free states (72), indicating the presence of a nearby absorbing state (73).

4.2. Particle Inertia

At the upper end of our size range (# ~ 1 mm), particle inertia can be significant, i.e., St = O(1),
even at modest y. Dimensional analysis then implies an inertial stress that scales with p,’y? g(¢),
the so-called Bagnold scaling (74), which is consistent with experimental (75, 76) and numeri-
cal (77-79) observation. Assuming that viscous (o) and inertial (ocpr?) stresses are additive, one
concludes that the former will dominate at low shear rates and the latter at high rates, with a
crossover occurring at y,. Above yj,, the rate-independence described above thus gives way to a
stress that is quadratic in y (leading to n o y), which is a form of continuous shear thickening.
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As with rate-independent flow, inertial rheology can be expressed in constant pressure terms.
Whereas J characterizes the rheology under purely viscous conditions, the appropriate dimen-
sionless shear rate under purely inertial conditions is the inertial number I = ay,/p, /B, with
and ¢ now functions of I only (80, 81). Generally, a viscous regime is expected for St = */J < 1,
and an inertial one is expected for St >> 1 (79).

A central and unresolved question is that of the dependence (if any) of y;, on ¢ when approach-
ing ¢.,. The inertial and viscous stresses are expected to scale, respectively, as y?(¢n — ¢)~F
and y(¢m — ¢) = (81), with ¢,, usually considered the same for both because inertia should not
affect the isostaticity condition (though a stringent test of this is absent). Equating the stress
contributions at the crossover leads to i, ~ (¢pm — ¢)#TFi. Several numerical works report
By = Bi = 2, or equivalently that & and ¢ are functions of a composite number K = J + a?
with ¢ — ¢ ~ K2 (53, 79). Meanwhile others (82-84), as well as experiments (85), report ; >
By (usually B; ~ 28, ~ 4-5, which is compatible with scaling theory for flow near jamming (36,
56), which predicts 8; = 28, ~ 5.7), implying that inertia is relevant down to a Stokes number
vanishing with proximity to jamming. However, the stress below which inertia can be neglected
iS NPin ~ (¢m — ¢)~2P+A which remains finite at jamming if 8; = 28,.

4.3. Brownian Motion

Following the rule of thumb in Section 1, Brownian forces become important for particles with
a < 1 um, leading to the characteristic stress scale k3 T/4* (86) becoming relevant. Thermal fluc-
tuations allow such Brownian particles to explore configuration space in the absence of external
driving, so that an underlying equilibrium phase diagram might be defined (42) (though often in
practice the system will not reach equilibrium over typical observable timescales).

Under flow, particle diffusion, which acts to redisperse any shear-induced microstructure and
restore equilibrium, competes with convection, which drives the system out of equilibrium. The
competition between the characteristic timescales for particle diffusion and convection is quan-
tified by a dimensionless shear rate, the Péclet number Pe = 67 nsa’y /kyT. This controls a
crossover between the relative importance of the Brownian and viscous stresses. The former is
sublinear in y due to Pe dependence of the microstructure (87), and thus Brownian suspensions
typically shear thin (88, 89). There may be a high shear (in practice this means Pe >> 1) viscosity
plateau, where rate-independence is recovered (unless other physics intervenes; see below).

An alternative perspective may be to consider Brownian shear thinning as the consequence of
a Pe-controlled change in the limiting volume fraction ¢, (43). Itis established that the viscosities
of Brownian and non-Brownian suspensions diverge at distinct points (5, 89), and these may be
associated with the glass ¢ and jamming ¢; transitions, respectively (recalling that ¢y > ¢g).
Hence, increasing Pe at a given ¢ leads to ¢,, increasing from ¢ to ¢y, resulting in shear thinning
(or indeed yielding if ¢ < ¢ < ¢y; 43).

4.4. Repulsive Interactions

In reality, particles usually have repulsive interactions acting over a finite range, stabilizing them
against clustering, inhibiting contact formation, and setting a force scale that is absent in the rigid
particles considered so far. These interactions may originate in electrostatics, in polymer coatings,
or from other physics (Brownian motion may provide an effective repulsion; 90). Importantly, a
characteristic repulsive stress F,/a* competes with the viscous one ¢y, and a dimensionless shear
rate can be defined, e.g., as y /(F, /n;a?). Details, including the range of the repulsive force, control
how this quantity governs the effective proximity to ¢, and the consequent rate-dependence that
emerges.
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As mentioned in Section 4.1, direct contacts among micrometer (and larger) sized particles
are typically frictional. The short-range repulsive interactions described above act to inhibit the
formation of such contacts between particles, maintaining lubrication layers and, thus, limiting (in
a stress-controlled manner) the role played by friction. The implications of this are profound and
far-reaching (for a review, see Reference 7). As the applied stress o is increased relative to an onset
stress o* o F,/a?, the repulsive barrier is overcome and particle contacts increasingly transition
from the lubricated to the frictional contact state. (The 1/4*> dependence ensures that particles
larger than a few microns are persistently frictional.) With friction present, fewer contacts are
required for mechanical equilibrium; i.e., z, is reduced (34). ¢y, will consequently reduce, from a
frictionless limit ¢ = ¢, (o /0* — 0) to a lower, frictional value ¢ = ¢y, (0 /o* — o0), as illus-
trated in Figure 3. Under fixed ¢, therefore, increasing o brings the suspension closer to jamming
by reducing ¢..(0) — ¢. This frictional transition mechanism [encoded in a popular constitutive
model (91) described later] provides a generic route to shear thickening that is distinct from the
inertial Bagnoldian rheology described above (92). (When present, inertia may nonetheless con-
tribute to mediation of particle contacts, thereby playing a role in a dynamic transition mechanism
and enabling repulsionless frictional shear thickening; 15, 83.) It was proposed based on theory
and simulation (14, 40, 91) and has been confirmed by a series of experiments (see 15, 93, and 94,
among many others). Example experimental flow curves n(o, ¢) are shown in Figure 3¢ (61).

The extent of shear thickening increases as ¢ approaches ¢{). Close to this value, the viscosity
increase becomes discontinuous (theory predicts that ¥ becomes nonmonotonic in o), whereas
above this value flow stops at stresses of order o*. Shear thickening by this mechanism bears
some hallmarks of a phase transition: increasing correlation lengths, stress fluctuations (95), and
separation into lubricated and frictional states (96-98).

The above discussion applies generally to repulsive particles, whereas increasing the range of
repulsion can introduce a separate effect. There exists a characteristic particle separation b for
which the repulsive force balances the typical viscous force ocneya?. Here, e = (a + b/2) acts as
the effective radius of a larger, soft particle, leading to an effective ¢ > ¢. The viscosity, now set
by, e.g., 1 ~ (¢m — ¢er)~?, is thus enhanced by the presence of the repulsive force (there may even
be a finite yield stress if ¢pesr > @m). As y increases, the force balance (assuming the repulsive force
increases with decreasing separation) dictates that 5 decreases, as do #.s and ¢ (though this must
remain >¢). The system consequently moves further from ¢,,, leading to reduced n. Low-y shear
thinning arising by this simple argument is a common feature of experimental rheology data (99).

4.5. Attractive Interactions

When present and sufficiently large, van der Waals (or other, for instance, depletion) forces lead to
attraction between particles. This introduces a competition between aggregation processes (stick-
ing particles together and providing elasticity; 100) and shearing processes (breaking particles
apart). Steady shear generically breaks attractive bonds between particles, destroying larger flocs
or clusters and leading to shear thinning (101-103), which is a typical characteristic of pastes (104).
For Brownian particles, aggregation processes are well understood in the context of colloidal gela-
tion (23), and their influence on the rheology is well established (5).

For non-Brownian particles, however, aggregation is instead driven by external forces, often
shear itself (105). There is some evidence that the same general picture of shear thinning due to
breaking aggregates applies both for weakly attractive particles (106) and rods (107), and for more
strongly attractive systems (108, 109). In the absence of shear, meanwhile, numerical evidence (47)
suggests that attraction reduces ¢,, in non-Brownian, frictionless systems. Recent experimental
measurements support the fact that weak attraction can enhance particle contacts (110) and even
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stabilize them against rolling (62). The combination of attraction and restricted tangential motion,
adhesion (or cohesion if the particles are identical), generates a yield stress at even lower volume
fractions, details of which are heavily protocol dependent (111). Shearing at sufficiently large o is
argued to break adhesive contacts and relieve tangential constraints on particles; this is contrary
to stress-induced friction, which introduces sliding constraints as the stress is increased. Under
steady shear, therefore, ¢, is reported to increase with o (see Figure 3), providing evidence that
the yielding and shear-thinning rheology of attractive, non-Brownian suspensions [an example
experimental flow curve n(o, ¢) is shown in Figure 3d; 62] might be characterized within the
same framework of stress-controlled changes to ¢,,, (112; see also 113). It is not yet clear whether
the few numerical works on attractive, frictional suspensions corroborate this (114, 115), in part
due to the challenge of precisely defining particle contact models comprising attraction, rolling,
and sliding friction.

4.6. More Complex Suspensions

Most suspensions will, in practice, have more than one relevant stress scale, with various physics
from the sections above being important under typical operating conditions. For example, the
combined effects of increasing and decreasing ¢,, due to, respectively, an adhesive stress (62) (or
indeed a Brownian stress; 116) and a repulsive stress can lead to nonmonotonic rheology. We
show such an example in Figure 3e, taking experimental data from Reference 63 (another exam-
ple is Reference 117). By tuning the relative importance of one of the dimensionless groups (in the
example shown, this is achieved by manipulating the attraction), one tunes between shear thinning
and thickening rheology. This might be characterized as a transition, as a function of o, across a
multidimensional ¢, map (Figure 35). Here, we plot such a surface (following Reference 112;
see Section 5.2) comprising both ¢,,-reducing and ¢,,-increasing physics. Besides the limiting
cases depending on only one stress scale (Figure 35 shows both a typical shear-thickening sus-
pension and an adhesive, shear-thinning one), a more general scenario with two (or more) stress
scales (01,073, . ..) that lead to much richer ¢,,(¢c’) may be useful to interpret the rheology of more
complex suspensions. For instance, Figure 3e links complex experimental rheological data to the
putative ¢,,(c') map sketched in Figure 3b. It is, however, still too early to assert this scenario, and
more experimental, numerical, and theoretical work in this direction is needed.

Dense suspensions with a broad particle-size distribution present more complexity still. Al-
though polydispersity is known to increase ¢, and consequently decrease the viscosity of rate-
independent suspensions (30), the effect of broad polydispersity on rate-dependent rheology is
not well understood. Whereas for roughly monodisperse suspensions the microscopic stress scales
described above map to macroscopic ones, for polydisperse suspensions this is more involved. In
practice, particle radii # may span six orders of magnitude (104). In such cases it is not clear how
to define bulk dimensionless control parameters, which have, for instance, St o 42, Pe o 4°, and
contact friction onset o* o« 1/4%. Extending the descriptions above to such systems poses a chal-
lenge (118), as do numerous other sources of complexity (we list a few as Future Issues below).

5. CONTINUUM MODELS AND FLUID MECHANICS

The above insights can be utilized to make predictions of suspension behavior in practical scenar-
ios. Doing so requires continuum models, giving the time evolution of the velocity field, which is
driven by the stress field through the Cauchy equation, and other macroscopically relevant fields
(the list of which is itself a modeling challenge), such as microstructure and volume fraction. Such
models must combine conservation laws with closures for the coupling terms relating the different

fields.
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We first address constitutive equations, i.e., closures relating the stress tensor to the (history
of) deformation. These should describe both steady and transient phenomena, the latter encoding
the relative slowness (dictated by the shear rate) of the microstructural evolution. We limit the
discussion to local models, acknowledging that nonlocal phenomena, relatively well studied in dry
granular matter (see, e.g., 119, 120), likely play a role in suspensions near ¢,,,. We then give a brief
introduction to two-phase continuum equations, which is necessary for describing flows involving
migration, i.e., relative motion between solid and liquid phases (Figure 24). We conclude with a
brief overview of some relevant aspects of the fluid mechanics of dense suspensions.

5.1. Rate-Independent Microstructural Constitutive Models

As briefly introduced in Section 4.1, the stress is strongly coupled to the anisotropy of the mi-
crostructure. The mathematical nature of the stress (being a second-order, symmetric tensor)
naturally calls for a coupling with a suitably defined fabric tensor. The main approach for rate-
independent suspensions thus follows the anisotropic fluid theory of Hand (121). This addresses
the time evolution of a fabric tensor (##z) under a velocity gradient tensor Va. The director »
represents, for instance, the orientation of particle contacts, and the components of the fabric ten-
sor are (mnm)qps = (nyng). If m is not uniformly distributed, its typical orientation is given by the
eigenvector of (nn) associated to the largest eigenvalue. Such a theory then consists of an expres-
sion for the stress tensor X as a function of (nn) and the symmetric part of the deformation rate
tensor & = (Vu + Vau')/2, and a dynamics for (nn). The latter depends on Va and is constrained
by frame indifference when particle inertia is negligible (see section 4.3 in Reference 122), and for
a homogeneous system is:

D (nn)
Dt

with D(nn)/Dt = d(nn)/dt + (nn) - 2 — £ - (nn) the corotational (or Jaumann) derivative and
2 = (Vu — VuT)/2. There are two routes to such a theory. The first is a phenomenological one,

L = X((nm), &), = F ((nn), &), L.

in which one keeps the structural form of these equations as general as permitted by symmetries
(e.g.,123-125), which keeps the theory flexible at the cost of having many free parameters and little
understanding of their microscopic origin. The other route is microstructural, with F ((nn), Vu)
derived from particle dynamics using simplifying assumptions (126—128). This limits the number
of free parameters but involves (often uncontrolled) approximations, in particular the closure of
higher moments of #, such as (nunn) in terms of (nn) (124, 129). Although phenomenological
models can achieve quantitative agreement with experimental data regarding the transient behav-
ior of the shear stress in simple shear (125), their predictions for normal stresses (when tested)
are usually poorer (124, 130) (although some aspects of the steady state behavior can be captured;
131).

A recent work revisited the microstructural route based on the physical picture of a nearby
jamming transition, giving a quantitative agreement with simulations for shear stresses and a qual-
itative one for normal stresses (128). The key assumption is that due to the one-sidedness of rigid
particle contacts (which dominate the rheology close to jamming), the microstructure reacts in a
strikingly different manner to compressive and extensional strains. This motivates a phenomeno-
logical theory in which, defining a decomposition £ = & + &, one gives distinct roles to the com-
pressive £ and extensional & strain rate tensors in the dynamics of (##) and in the stress—structure
relation (132).

These rate-independent equations may constitute a basis for the development of constitutive
models for suspensions with more complex interactions, as we discuss in the next subsection.
It should however be noted that so far, even for works following the microstructural route, the
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stress—structure relation is phenomenological and not derived from the microscopic dynamics.
In particular, the viscosity divergence at jamming, when considered, is assumed to follow the
algebraic form discussed in Section 4. Microscopically derived tensorial stress—structure relations
are still lacking, even though real progress has been achieved for scalar relations in model
suspensions (36, 56).

5.2. Constitutive Models for Rate-Dependent Suspensions

A typical approach in writing steady state rheological models is to define (for fixed ¢) limiting
no = n(y — 0) and ne = n(y — o0) (in principle these can be measured experimentally) and
then specify a smooth transition between them as a function of, e.g., y./y or /o (133). Such
rheological interpolation models are widely used for the fitting of data (5), and in some instances
¥c (or o) may provide microstructural insight (101).

As discussed in Section 4, the physics and rheology of several important classes of dense sus-
pensions can be described as the result of an alteration of ¢,, under flow due to the competition be-
tween applied stress and microscopic interparticle forces. This basic mechanism can be formalized
with rheological interpolation models that do have a microscopic grounding, as shown initially by
Wyart & Cates (91) in the context of shear thickening, and later extended by others (112).

These models address the activation and release, under stress, of particle-level constraints.
These are pairwise interactions that reduce the number of degrees of freedom along which particle
motion can occur (e.g., through friction or adhesion), thus altering ¢,,,. A measure of the degree of
constraint is encoded in a fraction of activated constraints f, which is a function of some compo-
nent of the applied stress, say, the shear stress o (some models instead use the particle pressure; 91).
This function is usually given a sigmoidal shape around the typical stress o needed to switch a
microscopic constraint, such that f(o < o) — 0 and f(o > o.) — 1. In turn, ¢,, depends on
/- In the absence of the microscopic constraint (for instance, the absence of frictional contacts in
the discussion in Section 4.4), ¢ (f = 0) = ¢, whereas when the constraints are fully activated
dn(f = 1) = ¢V (for frictional contacts, ¢V < ¢©). As sketched in Figure 34, ¢,,, controls the
viscosity through the divergence of  as, say, n ~ (¢ — $)~? (but this specific form is not a require-
ment). 7 is then an implicit function of o, interpolating between n = (¢ — ¢)7* for 0 < o and
n = (@Y — ¢)2 for ¢ > o.. These models have been quite successful at predicting steady state
rheology (93, 134) and also inhomogeneous flows and instabilities (69, 98; see also Reference 135
for an independent model with similar structure).

This mechanism can be extended to arbitrary numbers of constraint types and activation (or
release) stresses, leading to a wide range of possible predicted rheologies (112; see examples in
Figure 3b-¢). Such Wyart—Cates-like interpolation models can also be extended to tensorial con-
stitutive laws (136, 137) and constant particle pressure rheology (91, 138). Although these models
are motivated by a microscopic mechanism, they are in practice still phenomenological: In ad-
dition to the phenomenological viscosity divergence law, the relation f(o) is usually postulated,
although it is suggested that it is controlled by force chain physics (92, 93, 134). This opens the
possibility of deriving f (o) from microscopic statistical models (139).

5.3. Two-Phase Description

Many flows involve inhomogeneous deformation, sedimentation, or particle migration
(Figure 2i), and one cannot describe the suspension as a single-phase continuum. For these flows
the composition of the suspension evolves continuously in space and time, making them amenable
to a two-phase description in which particle and fluid phases are treated as interpenetrating con-
tinua comprising a volume fraction field and coupled velocity and stress fields for each phase. Such
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a model consists of conservation laws written separately for the solid and fluid phases, which one
can obtain via local volumetric averages (140). These involve a decomposition of the suspension
stress into solid and fluid phase contributions (which are independently measurable; 141, 142), as
well as a coupling term in the form of an interphase drag.

However, these equations do not form a closed system, as the stresses and interphase drag have
no exact expression in terms of phase velocities or volume fraction. Stresses are closed with a con-
stitutive model, as discussed in the previous subsections. A popular drag closure is the suspension
balance model (143, 144), which consists of expressing the drag term as proportional to the relative
velocity between the two phases. This is in essence closely related to the approximation behind
Darcy’s law for fluid flow through a porous solid phase. These aspects and their implications are
addressed in a recent review (6).

5.4. Fluid Mechanics

Most flows of dense suspensions—especially in nature and in engineering—are not well-
approximated by spatially homogeneous, rheometric conditions. Instead, they typically involve
spatial and temporal inhomogeneities in the stress, strain rate, and volume fraction. These situ-
ations are currently the focus of a significant research effort, drawing attention to several subtle
aspects introduced below.

The bulk effective fluid description of dense suspensions presented in the previous sections is
certainly a key tool to understanding fluid mechanical phenomena, but it is not sufficient in itself.
Flows involving nonuniform conditions require a two-phase description as described above, and
raise the question of the nonlocality of constitutive models (145). Nonuniform systems can also be
the result of instabilities, due to underlying nonmonotonic flow curves, leading to banding (146)
or dynamic instabilities (20, 95, 98, 135, 147-149). Shear-induced migration is also important in
nonuniform conditions (7, 150-152). Remarkably, there is a growing body of evidence that these
instabilities are coupled to macroscopic deformation of the free surface, when present (97, 148,
153, 154).

The free surface poses a challenge as it represents a deformable confinement, constrained by
both capillary forces and the incompressibility of the solvent. This is in striking contrast to dry
granular systems, which are free to dilate. The role of the free surface in the flow of dense suspen-
sions is in general subtle, as the large particle size makes it easy for particles to individually deform
the solvent-air interface. Curving a free surface on a particle-radius scale # requires a stress scaling
as 1/a to counteract the effect of capillary forces (see Figure 2j). For micron-sized particles, this is
easily achieved even in a rheometer, and particle-poking through the interface or a visible mattifi-
cation of the surface is often reported (9). The free surface is then a nontrivial boundary condition
for the fluid mechanical problem, and in practice it is not well approximated by either constant
volume or constant pressure conditions (155). The crucial role of the grain scale deformation of
the free surface is highlighted by situations in which the interface slowly recedes, like unwetting
or drying, which often leads to interface instabilities, particle deposition patterns, and granulation
(156-159). All these phenomena call for a careful modeling of the suspension free surface at the
microscale, which is little-explored thus far, at least in the context of dense suspension rheology.

6. CLOSING REMARKS

We have presented a perspective on the physics of dense suspensions. Interpreting the macro-
scopic phenomenology of real suspensions and constructing continuum descriptions on the basis
of the simple microscopic arguments introduced here will clearly be nontrivial in most cases.
Nonetheless, what we have presented are foundational concepts from which descriptions of more

Ness o Seto » Mari



Annu. Rev. Condens. Matter Phys. 2022.13:97-117. Downloaded from www.annualreviews.org
Access provided by Universite Grenoble Alpes on 03/13/22. For personal use only

complex systems can be assembled. Doing so will require further study in many areas, some of
which we propose below as Future Issues. Given the ubiquity of dense suspensions as both a
model system in condensed matter physics and an engineering material, there is no doubt that
they will remain a topic of research and debate in the future.

1. Can suspensions of nonidealized particles (aggregates, fibers, rods, with arbitrary poly-
dispersity) be approached by analogy to nearly monodisperse spheres, that is, only ad-
justing the values of key parameters like ¢, and the exponent g?

2. How far can the insights presented here be carried to the physics of suspensions with
non-Newtonian solvents? Recent work suggests that in some cases the rheology can be
captured by an effective local shear rate in the solvent, controlled by geometry close to
jamming (160).

3. The sensitivity of the jamming transition to the nature of particle contacts calls for more
attention to, in particular, the physics of contacts with a few surface asperities (as opposed
to the multicontact interface paradigm of friction between macroscopic particles; 19).

4. The statistical physics connecting microscopic details to flow close to jamming is lim-
ited to frictionless spheres (36, 41). Is the floppy mode paradigm relevant with friction
present (56)?

5. Suspensions with nonrigid constraints often have elastic structures. Can viscous contin-

uum models such as those described above be augmented to account for these?

6. The boundary condition provided by free surfaces plays a major role butis poorly under-
stood because it often involves particle-size curvature. What aspects of interfacial physics
(such as contact angle and roughness anchoring) matter most at the boundary?

7. More generally, to what extent do the simplifications made here (limited role of hydro-
dynamics, rheometric conditions, etc.) need to be relaxed in order to describe real flows,
which may involve instabilities and secondary structures?
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