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Oscillatory rheology of dense, athermal
suspensions of nearly hard spheres below
the jamming point

Christopher Ness, a Zhongyang Xing b and Erika Eiser b

The viscosity of a dense suspension has contributions from hydrodynamics and particle interactions,

both of which depend upon the flow-induced arrangement of particles into fragile structures. Here,

we study the response of nearly hard sphere suspensions to oscillatory shear using simulations and

experiments in the athermal, non-inertial limit. Three distinct regimes are observed as a function of the

strain amplitude g0. For g0 o 10�1, initially non-contacting particles remain separated and the suspension

behaves similarly to a Newtonian fluid, with the shear stress proportional to the strain rate, and the normal

stresses close to zero. For g0 4 101, the microstructure becomes well-established at the beginning of

each shear cycle and the rheology is quasi-Newtonian: the shear stress varies with the rate, but flow-

induced structures lead to non-zero normal stresses. At intermediate g0, particle–particle contacts break

and reform across entire oscillatory cycles, and we probe a non-linear regime that reveals the fragility of

the material. Guided by these features, we further show that oscillatory shear may serve as a diagnostic

tool to isolate specific stress contributions in dense suspensions, and more generally in those materials

whose rheology has contributions with both hydrodynamic and non-hydrodynamic origin.

I. Introduction

Flowing amorphous materials such as dense suspensions and
pastes find applications across industry, yet a complete micro-
scopic description of their mechanical behaviour remains the
subject of much study and debate.1 Though seemingly distinct
at a phenomenological level, many types of structurally dis-
ordered materials share underlying physical features, and their
rheology is increasingly unified by their positioning within
the jamming phase diagram.2–4 Those systems below jamming
are further unified according to simple phase diagrams that
take into account particle repulsion and attraction, inertia, and
friction.5–8

Such systems often also share the common feature of fragility:9

loads that are compatible with the microstructural configuration
can be sustained; incompatible loads, however temporary, lead
to rapid particle reorganisation. Materials in fragile states can
be forced to unjam or rearrange and flow by small changes in
shearing direction. The concept of fragility is also useful for
explaining the flowing behaviour of dense suspensions, which,
while not jammed themselves, may comprise fragile force chains
that can engage under compatible loads or collapse under

incompatible ones giving the material a highly anisotropic
viscosity.10,11 While this detail has been exploited recently to
tune the flow response of suspensions,12 fluctuations or inter-
mittent shearing can consequently coincide with highly non-
linear rheology, relevant to flow instabilities such as shark
toothing during paste extrusion, for example.13 To this end,
oscillatory rheology, which has classically been employed to
study viscous and elastic contributions to rheology across a
broad class of amorphous material,14–16 might prove useful in
suspension rheology not only to examine the material response
to non-steady flows in practice,17 but also to reveal the inherent
fragility and hence provide information linking microstructure
to bulk rheology. Though the presence of fragility has been
brought into question for jammed states of softer particles,18,19

it remains an instructive concept for understanding the roles of
microstructure and contact and hydrodynamic stresses in dis-
ordered materials below jamming.20

Dimensional analysis suggests that the rheology of athermal,
non-inertial, hard-sphere suspensions is rate-independent21–23

in the limit of large strains. The flow remains non-Newtonian,
though, in that arising nonzero normal stresses are linked to
the solids volume fraction f through the viscous number Iv,24

an analogue of the inertial number I.25,26 Experimental evidence
suggests, however, that even within this supposedly rate-
independent limit, dense suspensions may have stress contri-
butions arising from particle–particle interactions as well
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as hydrodynamics.20,27 Rate-independence holds for stresses
that are not close to s*, a threshold stress for the onset of
friction in such particle–particle surface contacts, which enhances
flow resistance.6 We expect, therefore, that the contact contribution
to the stress increases near s* (manifested as shear thickening28),
but that rate-independence holds elsewhere.

Below the jamming point, a finite strain is required for
assembly of load bearing contact structures,10 illustrated in
Fig. 1. At smaller strains, the microstructural state might repre-
sent some intermediate between successive load bearing states,
that is itself unable to sustain large stresses. Here, hydrodynamic
stresses may dominate, leading to apparently viscous rheology.
Ramping up the strain, we see an onset of load bearing contacts
at intermediate values (hitherto referred to as strain stiffening29),
and the above mentioned rate-independent, quasi-Newtonian
regime for large strains. This sequence of microstructural events
may be usefully interpreted as a nonlinear response to oscillatory
flow, as previously demonstrated in the context of soft colloidal
glasses.30 Oscillatory measurements in suspensions might, there-
fore, reveal viscous rheology at very small or large strains, with
nonlinearities arising for intermediate values.

Due to disordered crowding at the microscale, the particles
(e.g. the suspended solids in a suspension) do not follow an
affine trajectory as defined by the bulk material deformation, as
would be the case for a lattice solid.31 Instead, particle–particle
interactions, which do not necessarily obey any kind of spatial
or temporal symmetry, necessitate nonaffine trajectories at the
particle level at sufficiently large strains.32,33 For f o fc the
particle–particle interactions that give rise to nonaffinity are
further responsible for disrupting the time-symmetry of the
flow,34 as was beautifully demonstrated again in a recent
revisiting of Taylor’s classical experiment.35 In addition to a
bulk rheological nonlinearity, this affine-to-nonaffine transi-
tion in particle trajectories above a critical strain might serve as
a microstructural signature of the intermediate strain ampli-
tude regime.

In this article, we set out the response of nearly hard sphere
suspensions to oscillatory shear, taking evidence from simula-
tions and experiments to demonstrate the behaviour under
small-, medium- and large-amplitude strains. As discussed
above, and in accordance with a series of works,10,11,20 it has
proven highly instructive to consider the response of suspensions

to transient flows as a strain-dependent series of microstruc-
tural events. Within this framework, the interpretation of large-
amplitude oscillatory shear (LAOS) rheology data is challenging
and as such there is an ongoing discussion in the literature
on how one can understand the nonlinearities associated
with LAOS data.36 Initially, data were analysed in terms of an
oscillatory time series, with stress responses being interpreted
as superpositions of periodic contributions with varying phase
shifts that can be extracted through Fourier transformations.37

Later attempts to add a physical meaning to such superposi-
tions included the replacement of sinusoidal contributions
with exotic characteristic basis functions such as rectangular
and triangular waves,38 the stress decompostion approach,39

leading to the models of Ewoldt and McKinley40 that offer an
interpretation of elastic and viscous stresses as sets of ortho-
gonal polynomials. More recently, the ‘sequence of physical
processes’ framework41 has proven a successful approach to
capture the nonlinear response of yield-stress and visco-elastic
materials within the strain, strain rate and stress domain.
Given the lack of clear consensus in the literature regarding
methods of analyzing oscillatory rheology data for suspensions,
however, we refrain from making a specific choice from the
above models, and instead focus on the overall transient shear
stress response and how structural rearrangements give rise to
the rheological forms observed.

We find Newtonian behaviour for small strains, where
particles remain separated by viscous lubrication films. In terms
of a generalised non-Newtonian number proposed by Giacomin,42

we expect that this regime corresponds to a number close to zero,
since nonlinearities associated with either amplitude or frequency
effects are absent. For large strains the response is quasi-
Newtonian: the Lissajous curve shows superficially viscous
behaviour, but the suspension is within the above-mentioned
rate-independent regime, where both hydrodynamic and con-
tact stresses contribute to the overall rheology. At intermediate
strains, building and destroying particle contacts9 leads to
highly non-linear behaviour in all stresses and microstructural
quantities. We finally demonstrate that oscillatory rheology can
complement shear reversal protocols10,11,20,43 to diagnose
shear-induced structural contributions to the viscosity of dense
suspensions. This will be useful for characterising suspended
particles in material products as diverse as industrial ceramic
pastes and catalytic washcoats.

II. Methodology
A. Numerical simulation

Force and stress calculation. We consider dense suspen-
sions with solid volume fractions ranging from f = 0.50–0.62.
The material is represented by Np = O(103) bidisperse, spherical
particles (diameters d and 1.4d, density r) in a cubic periodic
domain of volume V. Newtonian dynamics are calculated in a
stepwise, deterministic manner using an established molecular
dynamics code,44 applying a normal penalty function Fc,n

a = kRra/|ra|
with stiffness k to minimize overlaps (with magnitude R) between

Fig. 1 Schematic of particle assembly in the unsheared state (left) and in
the sheared state (right). Dark shading indicates force-transmitting particle
contacts that appear after some necessary strain. Shown in 2-dimensions
for clarity; all simulation data are obtained from 3-dimensional suspensions.
Inset: coordinate definition used throughout.
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contacting particle pairs that have centre-to-centre vectors ra. We
further add a resistance to pairwise tangential motion Fc,t

a = kua,
for tangential displacement ua, constrained by a coefficient of
friction m such that |Fc,t

a | r m|Fc,n
a |.45 The particles are suspended

in a density-matching liquid, accounted for by resolving frame-
invariant hydrodynamic lubrication forces Fh

b with leading term
�asq6pZfvb, for neighbouring particle pairs (within a cutoff length
0.05d, the sensitivity to which we tested earlier7) with centre-to-
centre vector rb, relative normal velocity vb, fluid viscosity Zf and
squeeze resistance asq. A detailed description of the simulation
model is given elsewhere.46 The bulk contact and hydrodynamic
stress tensors are calculated according to

rc ¼ � 1

V

XNc

a¼1
ra Fc;n

a þ Fc;t
a

� �
; (1)

and

rh ¼ � 1

V

XNh

b¼1
rbF

h
b; (2)

respectively, where Nc and Nh are the number of contacting and
hydrodynamically interacting pairs, respectively. The total stress
is given by r = rc + rh. Data are presented for the shear (sxy) and
normal (sxx, syy, szz) components of r as well as sc

xy and sh
xy.

Sample preparation and oscillatory shearing. Samples are
prepared using an energy minimisation scheme comprising
thermal equilibration, leading to spatially isotropic suspensions
with no initial particle–particle contacts. The simulation box is
subjected to an oscillatory shear deformation of amplitude g0, with
flow and gradient in x and y respectively (see Fig. 1). The time-
dependent strain and rate of strain are given by g(t) = g0 sin(ot) and
_g(t) = g0o cos(ot), respectively. The strain amplitude g0 is varied
between 10�3 and 101 to explore the linear and non-linear
rheological responses of the suspension. Although, as dis-
cussed in the Introduction, we interpret the material response
throughout as series of microstructural events, as opposed to
superpositions of multiple bulk periodic functions, we find it
instructive to model the resulting shear stress according to
sxy(t) = s sin(ot + d), which gives representative storage (G0) and
loss (G00) moduli for the suspension as

G0 ¼ s
g0

cos d (3)

G00 ¼ s
g0

sin d (4)

from which we may recover an approximation of the complex
viscosity magnitude according to

|Z*| = (G02 + G002)1/2/o. (5)

We determined delta simply by using a best-fitting algorithm
to approximate the non-sinusoidal material response as a
sinusoidal one. This is a very good approximation in the small-
and large-amplitude limits where the response is close to linear,
but it necessarily averages over the nonlinearities for inter-
mediate amplitudes. Moreover, we find the complex viscosity
magnitude itself (without explicitly considering the phase)

a useful parameter to consider alongside the microstructural
evolution. Starting from the isotropic equilibrated assembly,
the samples are sheared for ten oscillatory cycles. The following
results represent ensemble averages across 40 realisations, for
the final five cycles. Notably, we did not observe any long term
effects when shearing the sample for additional cycles. In fact,
the long-time response is obtained within the first half of the
first cycle in all cases. This is in contrast to a recent study of dry
grains under oscillatory flow, in which rich phase behaviour was
observed after many shear cycles.47 We attribute this disparity to
our use of bidisperse grains, which frustrate ordering, and fixed
volume, which prevents contraction and dilation.

The dimensional parameters in the model and their units are
particle density r [mass/length3], particle diameter d [length],
fluid viscosity Zf [mass/(length � time)], particle stiffness
k [mass/time2] and shear rate _g(t) [1/time] (which is related to
frequency o [rad/time]), from which we construct two dimen-

sionless control parameters, r_g(t)d2/Zf and _gðtÞd=
ffiffiffiffiffiffiffiffiffiffiffi
k=rd

p
. We

choose o such that both parameters remain {1 for all t, giving
non-inertial and nearly hard sphere rheology, respectively. The
suspension viscosity and microstructural evolution under well-
established flow are therefore expected to be rate-independent.21

Shear stresses that resist flow are positive for positive _g, while
compressive normal stresses are negative independent of the
sign of _g.

B. Experimental protocol

Sample preparation. Experimental results presented here
are obtained using supermarket-bought cornstarch particles
supended at 50 wt% in a mixture that is itself composed of
50 wt% water and 50 wt% glycerol (suspending liquid viscosity
Zf = 0.012 Pa s, density r = 1.1 g cm�3). The steady shear
rheology of our suspension is quantitatively consistent with recent
works in shear thickening of cornstarch suspensions.48,49 Given
the acute size dependence demonstrated recently,6 therefore, we
expect that such agreement is indicative of comparable particle
sizes and assume a particle diameter of order 10 mm. The samples
were freshly prepared before each experiment and thoroughly
dispersed with a vortex mixer then rested for several minutes
before loading.

Oscillatory shearing protocol. Rheological measurements
were performed using a stress-controlled rheometer (Anton
Paar MCR501) in a cone-plate geometry with diameter 50 mm
and angle 21 at a temperature of 12 1C.50 The temperature control
was achieved by a Peltier system consisting of the bottom plate
and a hood with Peltier elements equipped on each. Oscillatory
strain sweep measurements were performed with strain ampli-
tudes g0 = 0.1–5, under a fixed angular frequency of o = 50 rad s�1,
ensuring the characteristic stress s exceeded the onset for
frictional particle contacts s*. Frequency sweeps ranging from
o = 0.5–50 rad s�1 were performed with strain amplitudes
g0 = 0.5 and g0 = 2. Measurements were taken across a minimum
of 100 oscillatory cycles in each case. The Péclet number remains
at all times c100 such that Brownian motion can be neglected.
The influence of sample sedimentation and evaporation is
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non-negligible after E60 mins, therefore all the presented data
were taken within this time duration. No evidence of particle
aggregation was observed during the experiment. It is noted
that shear history effects may arise in the experiment that are not
accounted for in simulation, though we verified that quantita-
tively consistent experimental results were obtained for both
upwards and downwards sweeps of amplitude and frequency.

III. Results

In Fig. 2 we present computational and experimental results of
the bulk rheological response of the suspension to oscillatory
shear, for increasing g0 at fixed o. Shown are computational
results for frictionless (m = 0) and frictional (m = 1) particles, both
at f = 0.55, and experimental results measured at o = 50 rad s�1

for which the characteristic shear stress s exceeds the onset
stress for frictional contacts s*.6,49 The numerically predicted
storage and loss moduli, particularly for frictional particles,
show remarkable qualitative agreement with experiment. Indeed,
the limiting complex viscosity magnitudes are in good quanti-
tative agreement, though there is some degree of offset in
the critical strain magnitude for the viscosity increase, Fig. 2d.
Such an offset might be explained by the disparity in precise

volume fractions, which is challenging to overcome for
cornstarch suspensions.29

The detailed shear stress response, predicted by simulation
at m = 0 and m = 1, is given in the form of Lissajous curves in
Fig. 3 at f = 0.55 for five representative values of g0. Shown in
Fig. 4 for m = 0 are the evolutions of per-particle contact number
Zc = 2Nc/Np and two quantifications of the suspension fabric,
defined according to directly contacting particles and hydro-
dynamically interacting particles, given respectively as

Ac ¼ � 1

Nc

XNc

a¼1
rara (6)

Ah ¼ � 1

Nh

XNh

b¼1
rbrb (7)

from which we report the xy components, written as Ac and Ah

for convenience. Contacts aligned in the compressive quadrant
have positive fabric contributions for positive shear rates, Fig. 1b.
In Fig. 5 we illustrate the reversibility and affinity of the particle
displacements with increasing g0. Shown in Fig. 6 are the normal
stresses and normal stress differences N1 = sxx � syy and
N2 = syy � szz corresponding to m = 0 in Fig. 3. Note that in

Fig. 2 Storage (G0) and loss (G00) moduli and complex viscosity magnitude (|Z*|) as functions of g0 for a dense suspension of nearly hard particles.
(a) Simulated suspension with friction coefficient m = 0, volume fraction f = 0.55; (b) simulated suspension with friction coefficient m = 1, volume fraction
f = 0.55; (c) cornstarch suspension at s 4 s* where we expect frictional contacts; (d) complex viscosity magnitude for each suspension. Shown are the
storage and loss moduli, defined according to eqn (3) and (4) and the complex viscosity magnitude calculated according to eqn (5). The presented moduli
are given in units of k/d and Pa, while the viscosity is scaled by the suspending fluid viscosity Zf.
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each case the simulation results are rate-independent. In Fig. 7
we present experimental results for frequency sweeps at g0 = 0.5
and g0 = 2, while in Fig. 8 we propose representative Pipkin
diagrams at two volume fractions.

A. Newtonian response at small amplitude

In the limit of small g0, the simulation predicts purely viscous
rheology, with sxy p _g, indicated by a circle in the stress–strain
Lissajous plot, Fig. 3, and G1

00
c G1

0, Fig. 2. This is in good

agreement with the experimental result. The contact contribu-
tion to the stress is observed to be negligible. Particles remain
separated by lubrication films that dominate the dissipation
and merely oscillate about their initial positions with no plastic
rearrangement. This is illustrated by Zc E 0, Fig. 4, and in
Fig. 5a, which gives the net displacement of a particle with
position after one cycle (ot = 2p) x2p from its starting position x0,
where h� � �i denotes the average over all particles and realisations.
In the limit of small g0, particle displacements are demonstrated

Fig. 3 Rheological data for oscillatory shear in a dense suspension, predicted by simulation for m = 0 and m = 1 at f = 0.55. Black lines indicate total shear
stress; blue lines indicate hydrodynamic contribution; red lines indicate contact contribution. (a) Stress–strain relationship for m = 0; (b) stress–strain rate
relationship for m = 0; (c) stress–strain relationship for m = 1; (d) stress–strain rate relationship for m = 1; shown are data for increasing g0, left to right, with
the axis labels in the far left applicable to their whole row. To indicate the phase of each set of data, results corresponding to _g(t) 4 0 are highlighted with
dashes, while those for _g(t) o 0 are dotted. Arrowheads in (a) and (b) indicate starting point and direction to read, for initial increase of the strain. Strain
amplitudes are indicated along the bottom axis.
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to be reversible. Similarly, for small g0, the absence of direct
particle contacts means individual particle motions are not
highly constrained, so their translation under oscillatory flow
tends to follow the affine deformation of the simulation box,

so fluctuating, or non-affine, velocities are small. In Fig. 5b we
plot the particle-averaged nonaffine velocity magnitudes at the
end of the shearing cycle, defined for particle i with position xi

and velocity vi as v0 = vi � _gxi. While Zc remains very close to 0,
Ac is undefined during most of the cycle. The overall structure
remains largely isotropic, with Ah - 0. Normal stresses remain
close to zero for small g0, so that the rheological response might
be described as Newtonian. This is in contrast to the large g0

limit, described later, that we refer to as quasi-Newtonian.
The small strain limit holds while the particle translations

induced by the shear flow remain smaller than the mean particle
separations developed during sample preparation. Indeed, the
transition to the irreversible region occurs for smaller g0 with
increasing f, as expected (Fig. 5). In this small strain regime,
therefore, there is no frequency at which particle contacts will
arise, so the relaxation time is always vanishing. As a result the
viscous response retains rate-independence provided we keep

r_g(t)d2/Zf, _gðtÞd=
ffiffiffiffiffiffiffiffiffiffiffi
k=rd

p
o 1.

B. Non-linear response at moderate amplitude

The stress response becomes non-linear when the strain mag-
nitude approaches then exceeds 10�1, evidenced by a surge
in the upper right quadrant of the Lissajous curves at g0 = 0.22
and g0 = 0.55, Fig. 3a. Here, particle contacts begin to

Fig. 4 Microstructural data for oscillatory shear in a dense suspension, predicted by simulation for m = 0 and f = 0.55. (a) Evolution of coordination
number Zc; (b) hydrodynamic fabric Ah; (c) contact fabric Ac. Shown are data for increasing g0, left to right, with the axis labels in the far left applicable to their
whole row. To indicate the phase of each set of data, results corresponding to _g(t) 4 0 are highlighted with dashes, while those for _g(t) o 0 are dotted.

Fig. 5 Irreversible and non-affine particle translation with increasing
g0 during oscillatory shear as predicted by simulation for m = 0. (a) Particle-
averaged net translation after one cycle of shearing. Particles return exactly
to their starting positions for g0 up to 0.1. For larger g0, plastic rearrange-
ments lead to a loss of reversibility; (b) particle-averaged non-affine
velocity magnitude (rescaled by a characteristic streaming rate g0od) after
one cycle of shearing. Spatially anisotropic particle–particle contacts at
large g0 lead to unbalanced forces on particles, that dissipate by non-affine
motions. We find equivalent results for m = 1.
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become widespread, with particles contacting at least one of
their neighbours on average at the peak strain, Fig. 4a. Over
these strain amplitudes, such particle–particle interactions begin
to generate contact stresses that contribute to the total stress
out-of-phase with the hydrodynamic stresses, which manifests as
G0 approaching G00 and a gradual increase of the suspension
viscosity magnitude |Z*|, Fig. 2. The larger deformations now lead
to large scale organisation of the microstructure, illustrated by the

emergent switching of Ah, and the loss of reversibility in particle
trajectories, Fig. 5a.

The reconfiguration of the particle contact network on this
scale further requires particle motions that deviate from the net
shearing flow. Moreover, direct particle–particle contacts lead to
unbalanced, anisotropic forces on particles that must be dissi-
pated by nonaffine motions, contributing to an increased sus-
pension viscosity.51 Linked to this, there is a sudden increase in

Fig. 6 Normal stress response to oscillatory shear, predicted by simulation for m = 0 and f = 0.55. We present (a) sxx; (b) syy; (c) szz; (d) N1 = sxx� syy and
(e) N2 = syy – szz. Shown are data for increasing g0, left to right, with the axis labels in the far left applicable to their whole row. To indicate the phase of
each set of data, results corresponding to _g(t) 4 0 are highlighted with dashes, while those for _g(t) o 0 are dotted.
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the magnitude of the non-affine velocities v0 when g0 4 10�1.
The nonaffinity increases with f as jamming is approached,
as particles must deviate further from their affine trajectories to
satisfy the imposed shear rate. This result is reminiscent of
several other findings and theoretical models.4,51 Though in
general for disordered systems the emergence of nonaffinity
and irreversibility are not necessarily equivalent, our results
indicate that the onsets of both are correlated in this case.
Precisely understanding the link (or lack thereof) between
these two phenomena for below-jamming systems could be a
promising line of future investigation and could indeed serve
to enhance the unification of disordered systems across the
jamming transition.

A sudden loss of contacts coupled with a discontinuity in Ac

is observed at _g = 0, corresponding to the turn-around of the
flow direction in the suspension. The distorted microstructure,
represented by both Ah and Ac, that appears under moderate
strain amplitudes becomes immediately incompatible with a
reversed shearing direction, allowing a total relaxation of direct
particle–particle contacts, resulting in loss of the contact stress
contribution and an instantaneous viscous flow with greatly
reduced stress. The structural information stored in Ac is lost at
this point, since it is undefined when Nc - 0. By contrast, the
hydrodynamic fabric Ah, which represents the mean orientation
of neighbouring particle pairs, remains even when the contacts
themselves vanish. We observe some continuity, therefore, in the
evolution of the microstructure at this scale during flow reversal.

The onset of widespread particle contacts corresponds to the
emergence of significant normal stresses, Fig. 6. Consistent
with previous findings,11 we observe that the deformation of the
contact network for increasing g(t) requires squeezing of lubrica-
tion films, generating compressive normal stresses and positive
N1, indicative of dilatant behaviour. This is best illustrated for
the g0 = 0.22 case, where we observe positive N1 (and negative N2)
for increasingly positive Ah. Upon reversal of the flow direction,
there is a very slightly negative N1 and a larger positive N2, both
indicating slight tensile behaviour, as the large scale micro-
structural orientation returns to isotropic, illustrated by Ah

returning to zero.
For strain magnitudes in the range 10�1 o g0 t 100, it is

noted that the stresses and microstructural quantities retain
strain dependent characteristics at all stages of the oscillatory
cycle, indicating that the flow never achieves a well-established
state, but rather remains in a perpetual transient configuration.
In this respect, we may state that full coherence between the
stress/strain state and the microstructural details is only
achieved towards the end of each oscillatory cycle (if at all),
meaning the suspension is fragile with respect deformations in
any direction. Although the complete change in flow direction
adopted here is at odds with the very small change in shear
direction required to indicate the presence of fragility, we find
that the rapid changes in stress response for very small amounts
of strain do indeed render this material fragile. The response
to moderate strain amplitudes is in contrast to the case where
g0 \ 101, discussed below, where the suspension achieves a
well-established state, i.e. the extent and arrangement of the

contact network reaches steady state near the start of each
oscillatory cycle.

C. Quasi-Newtonian response at large amplitude

For large strain amplitudes, the suspension microstructure
becomes well established shortly after the reversing of the sign
of _g(t), and the shear stress enters the aforementioned approxi-
mately rate-independent regime. Indeed, even the contact stress
is observed to be approximately rate-independent in this regime,
giving a viscous contribution that leads to considerably higher
viscosities in the large-amplitude compared to the small-
amplitude regimes. Here, the start-up period after each reversal
of flow direction, during which the microstructural quantities
evolve, represents a very small portion of each oscillatory cycle.
We studied the detailed evolution of the microstructure during
this phase in a separate work.11 Indeed, the loss modulus begins
to dominate again (Fig. 2), with the Lissajous plot appearing to
illustrate close to viscous flow. The extensive nonaffine motions
during the long period of plastic deformation result in substan-
tial irreversibility of the particle positions, Fig. 5. In this case, the
strain dependences of Zc and Ah, Ac indicate that the suspension
microstructure attains compatibility with the imposed flow
shortly after changes in flow direction, and thenceforth evolve
independently of _g(t) until _g(t) = 0, when the underlying fragility
is again manifested by considerable contact breakage and sub-
sequent reformation, which again takes place very shortly after
flow start-up in the new direction. The flow in this regime, being
predominantly viscous and with a considerable contact contri-
bution after the start-up period, is consistent with the rheological
law described by Boyer et al.24

The appearance of demonstrable nonzero values of N1 appears
to be a transient effect during contact formation/breaking
and microstructural evolution. For large strain magnitudes,
say g0 Z 8.79, where the contact number and fabric become
well established during the flow cycle, N1 remains close to zero
except at flow initiation. This suggests that, with respect to the
flow-gradient plane, the suspension is neither dilatant nor
tensile. The remaining non-Newtonian character is retained,
however, in N2, which demonstrates proportionality with _g(t)
when the microstructure is well established, illustrating a stress
contribution, i.e. that of the particle contacts, that acts uniformly
in x and y, consistent with the fabric Ac and Ah, but that is absent
in z. Overall, the quasi-Newtonian behaviour observed here for
large g0 is reminiscent of the viscous flow regime described by
Boyer et al.,24 in that the shear stress and normal stresses are both
nonzero and rate-independent, while contacts and hydrodynamics
contribute. Our results across a broad range of g0 demonstrate that
this picture can be unified with that of the fragile, breakable
contact networks seen for small and intermediate strains.

D. Oscillatory rheology as a diagnostic tool for shear-induced
structure

We have identified a low strain hydrodynamic-dominated viscous
regime, and a high strain contact-dominated viscous regime.
Provided we remain in the athermal, noninertial limit, the low
strain regime should remain viscous independently of the
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oscillatory frequency, since the dissipation is simply dominated by
hydrodynamics which are governed by the rheology of the sus-
pending liquid. We therefore expect |Z*| a f (o) in this region.
Conversely, any stress dependence in the shear-induced micro-
structure, for example frictional contacts appearing above s*,6

should show up in a frequency sweep at the high strain limit.
The simulations at m = 0 and m = 1, as well as the experimental
data, show an increased complex viscosity magnitude |Z*| and a
non-negligible storage modulus at g0 = 2, indicating a stress
contribution from shear induced structures at this point. We
present experimental results for such frequency sweeps in Fig. 7,
for g0 = 0.5 and g0 = 2. The low strain regime shows no frequency
dependence, as expected, while the large strain regime shows a
sharp increase in |Z*| with increasing frequency, Fig. 7. In spite of
the complexity of having both hydrodynamics and contacts con-
tributing to the shear stress in differing proportions, our Lissajous
plots presented above demonstrate approximately viscous rheology
at large strains for m = 0 and m = 1. Simply considering the magni-
tude of the complex viscosity, therefore, we recover the stress
dependence in the material viscosity. Plotting instead with the
characteristic shear stress s, we find a near linear increase in |Z*|
with s, reminiscent of the steady shear rheology of a comparable
suspension close to discontinuous shear thickening.6

This result is also consistent with our simulation result.
Comparing the |Z*| response as a function of m, we find the
disparity arises only at large strains. This is consistent with the
notion of a stress-dependent particle friction being detected under
large amplitude oscillatory flow. By this technique, therefore, we
might further extend the diagnostic capabilities of non-steady
flows. At small strains, a frequency sweep provides information
about the at-rest configuration of the suspension, and might also
be indicative of the rheology of the suspending fluid itself. At large
strain amplitudes, however, we can quantify the stress depen-
dence of any shear induced fragile structures. These might
contain information about the frictional or attractive properties
of particle–particle interactions, for example.

IV. Closing remarks

The results in this work provide further testimony to the poten-
tial of non-steady rheology measurements as diagnostic tools

for elucidating particle contact properties11 and suspension
stress contributors. Further work is needed to link these results
to those exploring additional complexities such as particle–
particle cohesive forces that may give rise to gel-like elasticity,
the Brownian regime that may give rise to glassy behaviour and
competition between thermal and convecting motion at low Peclet
numbers, and the crossover from viscous to elastic responses
at fc, for example.

The nonaffine framework has been developed and success-
fully used to calculate the shear modulus of general disordered
solids,31 including extending to specific cases of metallic glasses52

and polymer glasses.53 Linking the nonaffine framework to dense
suspensions, and therefore to disordered systems below jamming
more generally, remains a promising route, and one that
can be informed by further oscillatory shear experiments and
simulations.

Though a classical material for studying suspension rheology,
comparing experimental cornstarch data to somewhat idealised
simulation results remains tricky. In particular, the grains are
spherulites with facets and edges that are difficult to define as
‘hard’ or ‘rough’, particularly when solvent effects on the surface
friction are only now coming to light.54 Overall, though, our
findings demonstrate that with a sufficiently high friction coeffi-
cient, nearly-hard, bidisperse spheres can provide quantitative
bulk rheology data and are useful for interpreting microstructural
evolution associated with real suspensions.

In future, oscillatory shear in suspensions might be explored as a
tool for further elucidating the shear-jamming phase diagram.55,56

The emerging picture of discontinuous shear thickening as
a transition from lubricated to frictional particle inter-
actions28,57–59 presents interesting consequential volume frac-
tion effects. At low stresses, one expects the suspension viscosity
to diverge at fRCP E 64%, while at high stresses the divergence
occurs at fm E 58%. In the present article we remain below both
critical values of f (accounting for the shape effects in our
cornstarch suspension), such that we stay away from jamming or
shear-jamming at all times. By increasing the volume fraction to
fRCP o f o fm, though, we might explore the regime where
shear-jamming occurs above some critical strain, which could be
explored as an extreme strain-hardening effect.17 Such shear-
jamming might be aided by the inherent capability of dense

Fig. 7 Complex viscosity magnitude of cornstarch suspension as a function of strain amplitude for small and large amplitude oscillations. Shown are
(a) complex viscosity magnitude against oscillatory frequency o and (b) complex viscosity magnitude against characteristic shear stress s.
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packings to exploit pre-existing, potential load-bearing structures
at small strains.60 To this end, we construct tentative Pipkin
diagrams at two representative volume fractions, to illustrate
the general rheological regimes expected tying in the strain-
amplitude dependence explored in this work, Fig. 8. Here, we
indicate a line of fixed stress s* at which particle–particle
interactions become frictional. For simplicity we show this as a
sharp transition, but in practice the onset of friction occurs over
a range of stress.61 At low volume fractions this transition might
be observed as a shear thickening transition, similar to that
presented in this work, while at higher volume fractions it is
anticipated that the shear jamming regime is entered.

Our findings demonstrate the unique flow map of nearly
hard particle suspensions under oscillatory shear. Keeping the
strain small allows us to probe the rheology of the interstitial
fluid; large strains allow us to build up a shear induced micro-
structure and quantify its contribution to the viscosity. The
character of the intermediate regime can reveal the suscepti-
bility of the load-bearing contact network to incompatible
flows. More generally, our results may lay a template for future
use of oscillatory flows as diagnostic tools for characterising
challenging industrial suspensions,62,63 and may also inform
future microstructurally-based constitutive relations for dense
flowing systems.64
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