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Abstract

The rheology of dense suspensions lacks a universal description due to the involvement of a wide variety of parameters, ranging from the
physical properties of the solid particles to the nature of the external deformation or applied stress. While the former controls microscopic
interactions, spatial variations in the latter induce heterogeneity in the flow, making it difficult to find suitable constitutive laws to describe
the rheology in a unified way. For homogeneous driving with a spatially uniform strain rate, the rheology of non-Brownian dense suspensions
is well described by the conventional μ(J) rheology. However, this rheology fails in the inhomogeneous case due to nonlocal effects, where
the flow in one region is influenced by the flow in another. Here, motivated by observations from simulation data, we introduce a new dimen-
sionless number, the suspension temperature Θs, which contains information on local particle velocity fluctuations. We find that μ(J, Θs) pro-
vides a unified description for both homogeneous and inhomogeneous flows. By employing scaling theory, we identify a set of constitutive
laws for dense suspensions of frictional spherical particles and frictionless rod-shaped particles. Combining these scaling relations with the
momentum balance equation for our model system, we predict the spatial variation of the relevant dimensionless numbers, the volume fraction
f, the viscous number J, the macroscopic friction coefficient μ, and Θs solely from the nature of the imposed external driving. © 2025
Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
https://doi.org/10.1122/8.0000935

I. INTRODUCTION

Dense suspensions consist of Brownian or non-Brownian
solid particles suspended in viscous fluids in roughly equal
proportions. Such materials, for example, cornstarch in water,
slurries, blood, etc., have widespread applications in both
daily life and industry, and their flow is observed in many
natural phenomena. Therefore, understanding their rheology
is pivotal [1–4]. However, the rheology of these materials is
extremely complex and lacks a universal description due to
its dependence on various parameters such as the size,
asphericity, and surface roughness of the solid particles, the
nature of the suspending fluid, as well as the complexity
involved in the external driving. Various constitutive models
have been introduced based on defining appropriate dimen-
sionless numbers, but their validity is often limited to spe-
cific scenarios [5–10]. Therefore, identifying suitable
quantities to establish constitutive laws to describe the rheol-
ogy of different types of dense suspensions under various
driving conditions has been a topic of intense research
[6,11–17].

Under the homogeneous scenario, where the strain rate is
spatially uniform, the rheology of dense suspensions is well
described by three dimensionless quantities: the solid volume
fraction f; the ratio of the viscous time scale η=P to shear
time scale 1= _γ known as viscous number J ¼ η _γ=P; and the

ratio of shear stress σxy to normal stress P known as effective
or macroscopic friction coefficient μ ¼ σxy=P [6]. Here, η
and _γ are suspending the fluid viscosity and strain rate,
respectively. The interdependence of these dimensionless
numbers forms the constitutive laws for the homogeneous
rheology of dense suspensions. However, the validity or
structure of such constitutive laws might alter depending
on the various properties of the constituent particles.
Nevertheless, in real systems, the nature of the rheology is
often inhomogeneous due to the spatial variation of the strain
rate, so the aforementioned dimensionless numbers are not
sufficient [11]. Under homogeneous straining, J decreases
with decreasing μ and increasing f and, eventually, vanishes
when μ and f approach their limiting value μJ and homoge-
neous shear jamming volume fraction fH

J , respectively. This
physically signifies the cessation of the flow, however, in the
case of inhomogeneous flow, one can observe f . fH

J and
μ , μJ even for finite J due to shear-induced particle migra-
tion [18–28] and nonlocal effects [12,18,29–31].

Nonlocal phenomena in the rheology of various soft mate-
rials are studied extensively and pictured as a process where
flow in regions with μ . μJ facilitates flow in regions with
μ , μJ via diffusion of local fluidity of the system [32].
Such diffusion of local fluidity can be described by an inho-
mogeneous Helmholtz-like equation, which suggests a coop-
erative motion controlled by an inherent length scale [33,34].
In the context of dry granular systems, in [35], granular fluid-
ity is macroscopically defined as g ¼ _γ=μ. Later, in [36],
Zhang and Kamrin established the microscopic definition of
fluidity, denoted as ~g, in terms of fluctuations of particle
velocity, δu. ~g is uniquely determined by the local f and can
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be expressed as ~g ¼ ga=δu ¼ F fð Þ, where a is the particle
diameter. Such fluidity is found to be independent of f at
low volume fraction [37,38] but decreases with f at suffi-
ciently large volume fraction, vanishing as f approaches
random close packing, fRCP [39], irrespective of whether the
flow is homogeneous or inhomogeneous. Moreover, in [14],
a new dimensionless number, granular temperature
Θ ¼ ρδu2=DP, is introduced. Using power-law scaling, it is
demonstrated that μ, properly scaled by Θ, unifies homoge-
neous and inhomogeneous rheology with the inertial number
I being the scaling variable, thus replacing the conventional
μ(I) rheology by a μ(I, Θ) rheology for inhomogeneous
flows in dry granular systems. Here, I is the counterpart of J
for dry granular systems and D is the spatial dimension.

Similarly, motivated by the concept of Θ in [14], a recent
study [13] defined a new dimensionless quantity, the suspen-
sion temperature Θs ¼ ηδu=aP. Higher values of Θs stand
for higher mobility of the particles, thus enabling a higher
degree of softness of the system from the rheological point of
view. Additionally, the suspension temperature measures the
competition between convective flow, driven by external
forcing, and diffusive flow driven by collisions with other
particles. When particle trajectories are governed mostly by
collisions, their trajectories will deviate more from the affine
flow, so their suspension temperature will be large. Using
this novel quantity along with the other dimensionless quan-
tities f, J, and μ, a set of constitutive laws is identified that
unifies the homogeneous and inhomogeneous rheology of
dense suspensions of frictionless spherical particles.
However, such an approach remains unexplored for frictional
and aspherical particles. Interestingly, the constitutive laws
for homogeneous rheology differ for frictional and aspherical
particles compared to frictionless spherical particles. For fric-
tional particles, as the particle friction coefficient μp
increases, the sliding between particle pairs becomes increas-
ingly restricted, imposing constraints on both rotational and
translational degrees of freedom. This, in turn, leads to a
reduction in fH

J [40]. With asphericity, the effect on fH
J is

nonmonotonic. Specifically, for rod-shaped particles, fH
J

decreases when the aspect ratio (AR ¼ length/diameter)
exceeds an intermediate value of approximately 1.5. This
decrease is due to increased entanglement, or a higher
number of contacts per particle, which results in inefficient
random packing. However, when the aspect ratio is below
this threshold, fH

J increases because the reduced entangle-
ment allows for more efficient packing [41–45]. Therefore,
the validity of Θs for systems of frictional and aspherical par-
ticles remains unclear and requires further investigation.

In this work, using particle-based simulations, we unify
the homogeneous and inhomogeneous rheology of dense sus-
pensions of frictional spherical particles and frictionless rod-
shaped particles [46–50]. In combination with the suspension
temperature defined in [13] for frictionless spherical parti-
cles, along with other dimensionless numbers used to
describe the homogeneous rheology, we identify new scaling
relations that collapse the data of the homogeneous and inho-
mogeneous rheology. We find that some of the scaling rela-
tions identified here retain the same mathematical form but
exhibit different exponent values across systems involving

frictionless and frictional spherical particles, as well as fric-
tionless rod-shaped particles. However, other scaling rela-
tions apply only to specific systems, highlighting intrinsic
differences in their rheology. We further validate these
scaling relations by demonstrating their ability to predict
various dimensionless numbers in previously unexamined
simulation results.

II. SIMULATION DETAILS

We simulate two systems, consisting of non-Brownian
frictional spherical particles and frictionless rod-shaped parti-
cles using LAMMPS [51,52]. For the former, the system is
bidisperse, with particle radii a and 1:4a mixed in equal
numbers to prevent crystallization. For the latter, the rod-
shaped particles are created by attaching multiple spheres
with appropriate overlap to achieve the desired aspect ratio.
Rods constructed in this way are considered rigid bodies,
where the forces acting on each sphere within the rod are col-
lectively summed, resulting in a translational force acting on
the center of mass, along with a torque relative to the center
of mass. The coordinate of the center of mass and different
angles (Euler angles) are updated following rigid body
dynamics [53] using these forces and torques. Once the new
center of mass and its orientation with respect to the origin
are known, the constituent spherical bead coordinates are
updated. To prepare the initial state, we start with N particles
at a very small volume fraction. The orientations of these par-
ticles are randomized by running Brownian dynamics, and
thereafter, the system is compressed to achieve the required
volume fraction. In both cases, solid particles are suspended
in a density ρ matched viscous liquid. The simulations are
performed in a periodic box with dimensions Lx, Ly, and Lz
[see Fig. 1(a)]. To vary the solid volume fraction f, the
number of particles is adjusted while keeping the box size
constant. In the case of rod-shaped particles, the volume frac-
tion is computed by calculating the volume of each rod-
shaped particle. This volume is given by the total volume of
the spherical beads, provided there is no overlap between the
particles. If the particles overlap, the overlapping volume is
subtracted from the total volume to avoid double counting.
To deform the system externally, a space-dependent stream-
ing velocity U1(y) is introduced. As a result, a solid particle
experiences three different types of interactions with its sur-
roundings. First, the drag force and torque on a particle, due
to its relative motion with respect to the streaming fluid, are
modeled as

f di ¼ 6πηai U1(y)� uið Þ, (1)

τdi ¼ 8πηa3i Ω1(y)� ωið Þ: (2)

Here, ui and ωi are the linear and angular velocities of the
ith particle, and Ω1 ¼ (1=2) ∇� U1ð Þ. Second, the presence
of viscous fluid resists the relative motion of a pair of parti-
cles, modeled here as a hydrodynamic lubrication force
[54,55]. The leading-order term of this force and torque
between a pair of particles labeled as i and j with different
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diameters is given below [56,57]:

f hi,j �
1
hc ui,j � ni,j
� �

ni,j if hi, j , 10�3a0,
1
hi,j

ui,j � ni,j
� �

ni,j if 10�3a0 � hi, j � 0:05a0,

0 if hi, j . 0:05a0,

8><
>: (3)

τhi,j �
ln ai

hc

� �
ui,j � ni,j
� �

if hi, j , 10�3a0,

ln ai
hi,j

� �
ui,j � ni,j
� �

if 10�3a0 � hi, j � 0:05a0,

0 if hi, j . 0:05a0:

8>><
>>:

(4)

Here a0 is the radius of the smaller particle, hc ¼ 10�3a0,
ui,j ¼ (u j � ui) is the relative velocity, and hi,j ¼ (ai þ aj)
�jri,jj is the shortest distance between surface of two parti-
cles, where ai and aj are the radius of two different types of
particles. ri,j is distance between the centers of the two parti-
cles pointing from ith to jth particles. ni,j is a unit vector
given by ni,j ¼ ri,j=jri,jj. The reason for making the lubrica-
tion force independent of the distance at small hi,j is to allow
particles to come into direct contact. For clarity we have
omitted the scalar prefactors in our expression of Eq. (4), but
these are included in the model and are identical to those
reported earlier [57]. Third, the contact force and torque
between a pair of particles is modeled in the following way:

f ci,j ¼
knhi,jni,j � ktξi,j if hi, j , 0,
0 if hi, j . 0,

�
(5)

τci,j ¼ ai ni,j � ktξi,j
� �

if hi, j , 0,
0 if hi, j . 0:

�
(6)

Here, kn and kt are normal and tangential stiffnesses, chosen
as 7� 103 to allow for a sufficiently large time step to simu-
late the system over an extended period while ensuring that
particle overlaps remain minimal. ξi,j is the accumulated tan-
gential displacement between particles, computed from the
time they come into contact until the contact is broken. This

displacement accounts for the history dependence of the fric-
tional force [58]. According to Coulomb’s criterion, the
maximum allowable tangential force for frictional particles is
given by ktξi,j , μpknhi,j. We simulate four different systems
of frictional spherical particles with μp ¼ 0:1, 0:2, 0:3, and
0.4 and three different systems of frictionless rod-shaped par-
ticles with AR ¼ 1:5, 2:0, and 3.0. We obtain homogeneous
rheology data for fixed-volume systems over a suitable range
of volume fraction by generating simple shear via
U1(y) ¼ _γyx̂, with y the direction of the velocity gradient
and x̂ the unit vector along x. To keep our system in the rate-
independent regime, we choose our parameters such that
ρ _γa2=η � 1 and _γ

ffiffiffiffiffiffiffiffiffiffiffiffi
ρa3=k

p � 1 [6]. To obtain inhomoge-
neous flow we specify a spatially dependent liquid velocity
as U1(y) ¼ κ sin 2πy=Ly

� �
x̂ [see Fig. 1(b) and the gradient

_γ1 in Fig. 1(c)]. κ is a constant with dimension of velocity,
chosen to keep ρ _γa2=η below 0:01 throughout to be in the
overdamped regime. Such a flow field, used in many previ-
ous studies [12,59] to obtain inhomogeneous flow, can be
roughly considered two oppositely moving Poiseuille flows
under periodic boundary conditions. We note that inhomoge-
neous rheology leads to a spatially varying volume fraction;
therefore, in this work, f denotes the local volume fraction,
while �f represents the mean volume fraction averaged across
the entire system. We run simulations with systems contain-
ing O(104) particles, and with �f ¼ 0:48 to 0:62 for frictional
spherical particle system and 0.49 to 0.65 for frictionless rod-
shaped particle system. The stress tensor is computed on a
per-particle basis as Σi ¼

P
j (F

*
i,j � ri,j), counting both

contact and hydrodynamic forces. To understand the differ-
ence between homogeneous and inhomogeneous rheology in
our simulation setup, we need to compare the spatially
variant values of J, μ, f, and Θs obtained via inhomoge-
neous flow with the spatially uniform ones obtained via
homogeneous flow. In order to do that we compute the varia-
tion in y of the stress and velocity fields under inhomoge-
neous flow, which we do by binning particle data in blocks
of width a and volume Vb ¼ LxaLz, with the per-block value

FIG. 1. Inhomogeneous flow of a dense suspension of frictional spherical particles. Shown here are (a) a typical configuration of the system for �f ¼ 0:60,
with the highlighted region highlighting a coarse-graining box; and the steady-state profiles in y of (b) the streaming velocity field U1(y) in the x̂ direction
(solid line) and x component of the coarse-grained velocity field of the particles u (solid points); (c) the expected shear rate for a Newtonian fluid _γ1 ¼
@U1

x =@y (solid line) and the measured shear rate _γ ¼ @ux=@y (solid points); (d) the measured velocity fluctuations δu; (e) the pressure P and the normal stresses
σ ii; (f ) the shear stress σxy computed from the particle interactions.
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of a quantity being simply the mean of the per-particle quan-
tities of the particles with centers lying therein. We compute
the velocity fluctuation of each particle as δui ¼ jui � �uij
where �u is the average velocity of all particles with centers
lying in a narrow window +Δ (taking Δ ¼ O(0:1a)) of y,
and we then bin δui per block. To compute Θs we consider
only y and z components of ui to avoid any possible corre-
lated fluctuation originating from the structure in the shear
direction (i.e., x̂), especially in the case of aspherical parti-
cles. The data presented here averaged over approximately
5000 configurations in the steady state. Since we are using a
bidispersed system, segregation may occur. However, the rate
of segregation is orders of magnitude slower than any other
process in the system. As a result, the steady-state profiles of
velocity, stress, and volume fraction are reached long before
any measurable segregation takes place.

III. RESULTS

In Figs. 1(b)–1(f ), steady-state profiles in y of the
coarse-grained particle velocity ux (flow direction), strain
rate _γ ¼ @ux=@y, velocity fluctuations δu, pressure
P (¼ (�1=3)Tr(Σ)) and the normal stresses, and the shear
stress σxy are shown for frictional spherical particles with
�f ¼ 0:60 and μp ¼ 0:1, with each plotted point representing
a block. The particle velocity profile and applied streaming
velocity follow a similar trend, as expected, but the former is
flattened at the regions of largest f leading to significant
deviations between _γ and _γ1 (¼@U1

x =@y). The pressure
becomes spatially uniform in the steady state, and the normal
stresses exhibit weak anisotropy at the regions where μ . μJ .
The shear stress follows a similar spatial variation to the
shear rate.

In Fig. 2, the spatial variation of the dimensionless
numbers in the steady state is presented for two different �f,
close to and far from fH

J . In Fig. 2(a), the viscous number J
is presented. Since the pressure is uniform in the steady state,
J looks similar to _γ shown in Fig. 1(e). Although we start
our simulation from a uniform volume fraction, with strain-
ing, particles move toward the region with smaller strain rate
due to normal stress σyy imbalance and accumulate there

[21,22,60]. In the steady state f attains a maximum at J ¼ 0
and decreases as J increases. μ and Θs have a similar varia-
tion of σxy and δu, respectively.

The spatial variation of @ _γ=@y, as shown in Fig. 1(e),
highlights the inhomogeneous nature of the flow in our
setup, as for homogeneous flow, @ _γ=@y ¼ 0 throughout.
Given that the velocity profile U1 follows a sinusoidal
pattern [as shown in Fig. 1(b)], regions with larger J have
smaller @ _γ=@y, suggesting that the data from these regions
might align with homogeneous (simple shear) flow data.
However, regions where both J and @ _γ=@y are small are less
likely to correspond to homogeneous data. These regions
exhibit reduced inhomogeneity, as the entire region moves
together (creeping motion), as evidenced by the flatness of
the velocity profile in Fig. 1(b). The f and μ here go above
and below their homogeneous limit, fH

J and μJ , respectively,
and the local flow is primarily controlled by Θs, as we will
see later. Moreover, in [13], the inhomogeneity in the flow is
quantified for a setup similar to the one studied here by dem-
onstrating a growing length scale associated with the cooper-
ative diffusion of fluidity. This underpins the true
inhomogeneous nature of the flow in our setup.

A. Rheology of frictional spherical particles

Before we go into the details of identifying scaling rela-
tions, we present the dependence of the dimensionless
numbers for both homogeneous and inhomogeneous flow in
Fig. 3. In Fig. 3(a), the dependence of the macroscopic fric-
tion coefficient μ on the viscous number J is shown. The
black data points represent homogeneous flow, and the black
solid line is the best fit using a simple power law form

μ ¼ μJ μp
� �þ A μp

� �
Jα: (7)

Similar to [40], in our study, we find μJ exhibits strong
dependence on μp as shown in Fig. 3(b). The inset, however,
the exponent α seems to be independent of μp within the
studied range. The other data points are for inhomogeneous
flow for different mean volume fractions, �f. One can clearly
see that at large J, where the flow is comparatively

FIG. 2. The spatial variation of the dimensionless number and the inhomogeneous nature of the flow in the steady state for �f ¼ 0:60 (solid line) and �f ¼ 0:55
(dashed line). Shown are (a) the viscous number J ¼ η _γ=P, (b) the local volume fraction f, (c) the macroscopic friction coefficient μ ¼ σxy=P, (d) the suspen-
sion temperature Θs ¼ ηδu=aP, and (e) the spatial variation of @ _γ=@y, where higher values of @ _γ=@y indicates a higher degree of inhomogeneity.
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homogeneous, inhomogeneous data points are superposing
on the homogeneous data points. However, at comparatively
small J, the effect of inhomogeneity becomes prominent
manifesting as the deviation of homogeneous and inhomoge-
neous data. Moreover, for inhomogeneous flow, μ goes
below μJ due to the nonlocal effect.

In Fig. 3(b), the dependence of local volume fraction f on
J is shown. The black points for homogeneous flow are
fitted with the homogeneous constitutive law [6]

f ¼ fH
J (μp)� B(μp)J

β , (8)

where fH
J is the μp dependent homogeneous shear jamming

volume fraction, which is the same as fRCP for vanishing μp
but decreases with increasing μp [see Fig. 3(b), inset and
[40]]. Similar to the μ� J plot here also inhomogeneous data
fall on homogeneous data for larger J but deviate at smaller
J. Also, for all inhomogeneous data, the local volume frac-
tion can be more than fH

J for finite J, suggesting that, unlike
homogeneous μ(J) rheology, the flow is not solely controlled
by μ and J.

The dependence of Θs on J is shown in Fig. 3(c). For
both homogeneous and inhomogeneous flow, Θs decreases
monotonically with J but at a smaller rate for inhomoge-
neous flow. For a fixed J inhomogeneous Θs is larger than
the homogeneous Θs, suggesting a possible significant role
of Θs in inhomogeneous flow. For homogeneous flow, Θs

and J are related by the following power law:

Θs ¼ G(μp)J
γ : (9)

This power law dependence is also reported in [28]. In
Fig. 3(d), the relation between f and Θs is shown. The
homogeneous data are fitted with a power law

f ¼ fH
J μp
� �� D μp

� �
Θδ

s : (10)

Similar to other quantities, at smaller J, inhomogeneous data
deviate from homogeneous data. Interestingly, for

f . fH
J (μp), Θs remains nonzero indicating the role of Θs in

flow in the regions with high f. For a fixed f, inhomoge-
neous flow has higher velocity fluctuations. For homoge-
neous rheology, we do not observe any significant stress
differences but for inhomogeneous rheology, we observe
spatial variation of the normal stresses as shown in Fig. 1.
In the inset of Fig. 3(d), the first normal stress difference
N1 ¼ σxx � σyy and second normal stress difference
N2 ¼ σyy � σzz are shown as functions of J.

Our first scaling relation, shown in Figs. 4(a) and 4(e), is
the divergence of the relative viscosity of the suspension
(ηr ¼ μ=J) at the jamming volume fraction, fJ , given by

μ=J ¼ F S
1a fð Þ, (11)

with

F S
1a fð Þ ¼ η0 μp

� �
fJ μp

� �� f
� �ν

: (12)

Here, ν � 2. For homogeneous rheology fJ ¼ fH
J mono-

tonically decreases from fRCP with increasing μp [40]. For
inhomogeneous flow, fJ ¼ fIH

J independent of μp and is
found to be close to fRCP. However, this power law diver-
gence of viscosity for inhomogeneous flow is only valid for
f , fH

J (μp), although the viscosity diverges at fRCP. η0 is a
μp dependent coefficient with different values for homoge-
neous ηH0

� �
and inhomogeneous ηIH0

� �
rheology. We find

(ηIH0 =ηH0 ) � 2 and 3 for μp ¼ 0:1 and 0.5, respectively. The
reason to have such dependence is the following. Since some
part of our inhomogeneous simulation box is strained homo-
geneously (at large J) data from this region fall on top of the
homogeneous flow data. Thus, we have two different power
laws for homogeneous and inhomogeneous flow, which start
from the same point and diverge with the same exponent but
at different volume fractions. Therefore, in our scaling rela-
tion, we have a prefactor that not only depends on the μp but
also on the nature of the rheology.

However, for inhomogeneous flow with large �f, due to
particle migration, the local volume fraction goes above

FIG. 3. Relations between the dimensionless control parameters for a system of frictional spherical particles with Lx ¼ Lz ¼ 20a, Ly ¼ 100a, and μp ¼ 0:2.
Shown are the relationships between the dimensionless viscous number J and (a) the macroscopic friction coefficient μ; (b) the local volume fraction f; and
(c) the suspension temperature Θs, for a range of mean volume fractions �f in both homogeneous and inhomogeneous flows. In (d), the relationship between f
and Θs is shown. The Inset of (b) shows the dependence of fH

J and μJ on μp. The black solid lines in (a)–(d) represent the best fits to the homogeneous data
based on Eqs. (7)–(10), respectively. The inset in (d) shows the first normal stress difference (N1 ¼ σxx � σyy) and second normal stress difference
(N1 ¼ σyy � σzz) as a function of J for �f ¼ 0:60.
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fH
J (μp). In this regime, the scaling relation given in Eq. (11)

does not apply. The inhomogeneous flow at f . fH
J is con-

trolled by Θs. In Figs. 3(b) and 3(d), the homogeneous and
inhomogeneous data do not follow the same trend but for
fixed f, in inhomogeneous flow, both J and Θs seem to have
higher values compared to homogeneous values. This indi-
cates that, among the regions which have same f, the flow
rate is higher where velocity fluctuations are higher. This
correlation leads to another scaling relation presented in
Figs. 4(b) and 4(f ). Here, we exploit the power law
dependence of J and Θs on f given in Eqs. (8) and (10) to
establish our next scaling relation

J=Θs ¼ F S
1b fð Þ: (13)

The data collapse is supported by the following form of
scaling function:

F S
1b(f) ¼ AS

0 �
AS
0

1þ AS
1 fIH

J � f
� �2 , (14)

with fIH
J � fRCP. Here, it is important to emphasize that the

mathematical form of the scaling function is chosen purely
for predictive purposes, without implying any physical sig-
nificance. While the form of the scaling function may
suggest certain physical phenomena, these interpretations
may not hold true for the actual system. For example, F S

1b(f)
suggests that J=Θs would vanish at fIH

J with an exponent of
2; however, this might not be accurate, as we lack data points
near fIH

J to confirm this behavior. The primary reason for
selecting this specific functional form is that it provides a
good fit for data collapse within the studied range. The argu-
ment is valid for all the scaling functions used here.

Next, we focus on the power law dependence of μ and Θs

on J given by Eqs. (7) and (9). In both cases, homogeneous

and inhomogeneous data seem scattered but for a fixed J
inhomogeneous μ lie below homogeneous data, whereas Θs

shows an opposite trend. This suggests that regions with
smaller μ have higher velocity fluctuations, which maintain
the flow rate. Following [13] and [14], we attempt to scale μ
by Θs using the power law scaling. From Eqs. (7) and (9),
we expect a power law scaling Θsμ � Jαþγ . However, unlike
dense suspensions of frictionless spherical particles in [13],
this power law scaling does not result in a satisfactory data
collapse at small J. We find with an adjustment of the weight
of μ and Θs such scaling can provide us with our next
scaling relation valid for a wide range of J, given below:

μ1:4Θ0:6
s ¼ F S

2 Jð Þ: (15)

Here, F S
2 Jð Þ is given by

F S
2 Jð Þ ¼

CS
1J

αS1 if J . 10�2,

CS
2J

αS2 if 10�2 	 J . 5� 10�4,

CS
3J

αS2 if J � 5� 10�4:

8><
>: (16)

The form of the scaling function depends on μp, with the
exponents αS

1, α
S
2, and αS

3 found to be 1, 0.85, and 0.55, and
0.9, 0.75, 0.55 for μp ¼ 0:1 and 0.5, respectively. This
perhaps originates from the fact that the various scaling expo-
nents are not universal but rather dependent on the friction
coefficients μp. The data collapse is shown in Figs. 4(c)
and 4(g). Our next scaling relation is based on the granular
fluidity defined as J=μΘ (see [36]) which uniquely depends
on f for both homogeneous and inhomogeneous flows. The
theoretical justification of such quantity is given by kinetic
theory [61,62]. Similar to this an effective suspension fluidity
is introduced in [13] for suspension of spherical frictionless
particles. Here, we extend this to the suspension of frictional

FIG. 4. Identified scaling relations for frictional spherical particles with two different friction coefficients μp ¼ 0:1 (top) and 0.5 (bottom). In (a)–(d), the
collapse of homogeneous and inhomogeneous data according to scaling relations given by Eqs. (11), (13), (15), and (17) for μp ¼ 0:1 are presented.
The solid black lines represent the scaling function (see text for details). The inset of (d) shows an additional scaling relation obtained from Eqs. (13) and (17).
(e)–(h) show the same for μp ¼ 0:5.
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spherical particles, which gives us

J=μ1:1Θs ¼ F S
3 fð Þ: (17)

Here,

F S
3(f) ¼ DS

0f
3 � DS

0f
3

1þ DS
1 fIH

J � f
� �2 (18)

shown in Figs. 4(d) and 4(h).
Thus, we effectively have three scaling relations. The

second and third scaling relations, given by Eqs. (15)
and (17), are valid across a wide range of volume fractions,
both above and below fH

J . In contrast, the first scaling rela-
tion is divided into two parts. The first part, Eq. (11), applies
for f , fH

J , while the second part, Eq. (13), is valid above
fH
J . Later, we will demonstrate how these scaling relations,

combined with the momentum balance equation, allow us to
predict all the relevant dimensionless numbers based solely
on the applied fluid flow. In addition to the scaling relations
discussed above, using Eqs. (13) and (17), it is possible to
deduce another relation μ1:1 � F 1b(f)=F 3(f). The data
collapse for μp ¼ 0:1 using this scaling relation is presented
in the inset of (d).

B. Rheology of frictionless rod-shaped particles

For the system of frictional spherical particles, we find
decoupling of homogeneous and inhomogeneous shear
jamming volume fraction (i.e., fH

J , fRCP � fIH
J ) due to the

frictional constraints. Similar decoupling is also expected for
rod-shaped particles due to the constraints imposed by
asphericity quantified by the aspect ratio. The relations
between different dimensionless numbers for this system,
shown in Fig. 5, are similar to those for frictional spherical
particles. The homogeneous data follow the same functional
form given by Eqs. (7)–(10) and are, therefore, not discussed
here. Both fH

J and μJ exhibit nonmonotonic dependence on
AR, with an maximum value of AR � 1:5, shown in the inset
of Fig. 5(b).

We further identify the scaling relations to unify the
homogeneous and inhomogeneous flow of rod-shaped, fric-
tionless particles. We find that the scaling relation
μ=J � F S

1a(f), which works for frictionless spherical parti-
cles across the entire range of volume fractions and for fric-
tional spherical particles within a limited range, particularly
below fH

J , does not hold for frictionless rod-shaped particles.
However, the scaling relation in Eq. (13) holds over a wide
range of volume fractions, including both above and below
the aspect ratio-dependent fH

J . This is our first scaling rela-
tion for the system of frictionless of rod-shaped particles,
which can be expressed as

J=Θs ¼ FR
1 fð Þ: (19)

Here,

FR
1 fð Þ ¼ AR

0 �
AR
0

1þ AR
1 fIH

J � f
� �2:4 (20)

is the best fitted form of the master curve which vanishes at
fIH
J as shown in Figs. 6(a) and 6(d), for AR = 1.5 and 3.0.

Unlike the frictional spherical system where fIH
J is

independent of μp and always same as fRCP, for rod-shaped
particles fIH

J are found to be different for different AR.
Similar to the scaling relation given by Eq. (15) for the
system of frictional spherical particles, we find such power
law scaling also works for rod-shaped particles but with dif-
ferent exponents:

μ1:2Θ0:8
s ¼ FR

2 Jð Þ, (21)

where the best form of the scaling function FR
2 Jð Þ is the

following:

FR
2 Jð Þ ¼

CR
1 J

αR
1 if J . 2� 10�2,

CR
2 J

αR
2 if 2� 10�2 	 J . 8� 10�4,

CR
3 J

αR
3 if J � 8� 10�4:

8><
>: (22)

FIG. 5. The relationships between the dimensionless control parameters for a system of frictionless rod-shaped particles with Lx ¼ Lz ¼ 25a, Ly ¼ 80a, and
aspect ratio AR ¼ 2:0. Shown are the relationships between the dimensionless viscous number J and (a) the macroscopic friction coefficient μ; (b) the local
volume fraction f; and (c) the suspension temperature Θs, for a range of mean volume fractions �f in both homogeneous and inhomogeneous flows. In (d), the
relationship between f and Θs is shown. The inset of (b) shows the dependence of fH

J and μJ on AR, which are in strong agreement with [42,45]. The black
solid lines in (a)–(d) represent the best fits to the homogeneous data based on Eqs. (7)–(10), respectively. The inset of (c) shows schematics of rods with two
aspect ratios, AR ¼ 1:5 and 3. The inset of (d) shows the first and second normal stress difference (N1 and N2) as a function of J for inhomogeneous flow with
similar trend to ones reported in [47].
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As with frictional spherical particles, the scaling exponents
are independent of AR, but the exponents αR

1 , α
R
2 , and αR

3 in
the master curve are found to be 1.06, 0.83, and 0.59 for
AR ¼ 1:5, and 0.94, 0.78, and 0.48 for AR ¼ 3:0, respec-
tively, see Figs. 6(b) and 6(e).

Similar to frictional spherical particles our third scaling
relation for rod-shaped particles describes the dependence of
effective suspension fluidity on the volume fraction, uniquely
defined for both homogeneous and inhomogeneous rheology.
We find in this system the effective suspension fluidity can
be defined as J=μ0:5Θs and exhibits the following relation as
shown in Figs. 6(c) and 6(f ):

J=μ0:5Θs ¼ FR
3 fð Þ, (23)

where

FR
3 fð Þ ¼ DR

0f� DR
0f

1þ DR
1 fIH

J � f
� �2 , (24)

vanishing at an AR dependent volume fraction fIH
J . An addi-

tional scaling relation obtained from Eqs. (19) and (23) is
presented in the inset of Fig. 6(c). Previous studies [41,42]
suggest that orientational ordering of rod-shaped particles in
the direction of U1 is possible under straining. We further
investigate this possibility in our system by measuring the
angles hθxi, hθyi, and hθzi between the axis of the rod-
shaped particles and the x, y, and z axes, respectively, as
shown in the inset of Fig. 6(d) for AR ¼ 3:0. For homoge-
neous flow, we find that particles exhibit a tendency to align

in the flow direction, as indicated by the smaller value of
hθxi compared to hθyi and hθzi. However, in inhomogeneous
flow, they remain more or less isotropic, possibly due to par-
ticle migration and variations in the spatial derivative of U1.
No qualitative change is observed for different volume frac-
tion and AR.

IV. PREDICTION

Our system is characterized by four dimensionless
numbers and three effective scaling relations. By examining
the spatial variation of just one of these dimensionless
numbers, we can comprehensively capture and describe the
system’s rheological behavior. In our simulations, however,
the only known input is the externally applied streaming
velocity profile, represented by U1(y). Thus, to utilize the
scaling relations, we must be able to compute one of the
dimensionless numbers from the information of U1.
To do so, considering the inertia-free momentum balance
∇ � Σ ¼ � f per unit volume, for the lth segment of the simu-
lation cell, we express the following equation:

Nl6πηal U
1
x,l � ux,l

� 	 ¼ � @σxy,l

@y


 �
Vb: (25)

Here, Nl, U1
x,l, ux,l, and σxy,l represent the particle number

in the block, the liquid streaming velocity at the block center,
the particle velocity, and the stress averaged over the block,
which has volume Vb. al represents a volume averaged parti-
cle radius at l with magnitude � 1:2 for spheres and 1 for
rod-shaped particles. The left-hand side of Eq. (25) repre-
sents the net viscous force on the particles due to fluid drag.

FIG. 6. Identified scaling relations for frictionless rod-shaped particles with two different aspect ratios, AR ¼ 1:5 and 3. In (a)–(c), the collapse of homoge-
neous and inhomogeneous data according to scaling relations given by Eqs. (19), (21) and (23) are shown. The solid black lines represent the scaling function
(see text for details). The inset of (c) shows an additional scaling relation obtained from Eqs. (19) and (23). (d)–(f ) show the same for AR ¼ 3. The inset of (f )
shows the spatial variation of angle between the axis of rod-shaped particles with different axes. Empty and solid symbols are for homogeneous and inhomoge-
neous flow, and solid, dotted, and dashed lines represent x, y, and z components, respectively.
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Under inertia-free conditions this is compensated by the net
stress gradient within the block. Using our dimensionless
number definitions, Eq. (25) can be reformulated for the
streaming velocity at y as

U01
x (y) ¼

ðy
0

1
a
J*(y0)dy0 � 2a

9f(y)
@μ*(y)
@y


 �� 

, (26)

where U01
x (y) ¼ U1

x (y)η=aP and the asterisks indicate multi-
plication by sgn( _γ1(y)). Note that P is uniform at steady state
and f(y) ¼ (4=3)πa3N(y)=Vb. Thus, Eq. (26) links the exter-
nally applied liquid flow field to the profiles of J, μ, and f.

Given U1
x , we solve Eq. (26) and the scaling relations

[Eqs. (11), (13), (15), and (17)] for frictional spherical parti-
cles, and Eqs. (19), (21), and (23) for frictionless rod-shaped
particles] numerically by the following method. Initially, we
assume a f yð Þ profile, hypothesizing accumulation of parti-
cles at points where the spatial derivative of U1 is zero, start-
ing with a simple Lorentzian form f(y) ¼ Pnp

k¼1 ak=
[(y� y0k)

2 þ b2k]þ f0, with mass conserved through
�f ¼ (1=Ly)

Ð Ly
0 f yð Þdy. Here, np is the number of points

where the first derivative of U1 is zero, y0k is the coordinate
of such a point, and bk is the width of the Lorentzian func-
tion centered at y0k . Next, we compute J, μ, and Θs directly
using the scaling relations, before attempting to balance
Eq. (26). The imbalance in Eq. (26) indicates the accuracy of
our initial guess. We refine f(y) by adjusting f0, ak, and bk
until Eq. (26) is satisfied within an acceptable tolerance.

The results, shown in Fig. 7, compare predicted outcomes
against previously unseen simulation data (i.e., data not used
for obtaining the scaling exponents) with �f ¼ 0:595 for fric-
tional spherical particles, 0:615 for frictionless rod-shaped
particles, and U1(y) ¼ κsin(2πy=Ly)x̂, demonstrating the
success scaling relations in predicting y profiles of f, J, μ,
and Θs. Despite the highly nonlinear nature of the scaling

relations and many orders of magnitude spread of J and Θs,
the predictions are reasonably accurate.

V. CONCLUSION

Through particle-based simulations, we establish a univer-
sal description of the flow behavior of dense suspensions, of
frictional spherical and frictionless rod-shaped particles. In
addition to the standard control parameters solid volume frac-
tion f, viscous number J, and macroscopic friction coeffi-
cient μ, we introduce a novel parameter, suspension
temperature Θs, representing velocity fluctuations, inspired
by concepts from dry granular materials. Our findings reveal
scaling relations among these parameters that successfully
collapse data for both homogeneous and inhomogeneous
flows. Using the momentum balance, we demonstrate that
the characteristics of general homogeneous and inhomoge-
neous flow can be predicted based on the applied external
force. It is important to note that in this work, we primarily
focused on finding the existing scaling relations from the
simulation data rather than a thorough investigation of the
physical origin of them. Other choices of dimensionless
quantities, for instance, based on the rotational degrees of
freedom may warrant further investigation. The exponents
reported here are found by using an ad hoc method to obtain
the best data collapse. The physical origin of these exponents
and the validity of the identified scaling relations in flows
with more complex geometries such as hopper flow [38]
remain unexplored here but represent natural and important
avenues for future work, alongside extending the proposed
scaling relations to situations where the gradient of the flow
rate extremely large [13].

ACKNOWLEDGMENTS

B.P.B. acknowledges support from the Leverhulme Trust
under Research Project Grant No. RPG-2022-095; C.N.

FIG. 7. Predictions of the spatial variation of the dimensionless quantities f, J, μ, and Θs using the identified scaling relations and momentum balance equa-
tion against simulation data not used for the data collapse, for the system of frictional spherical particles (top) and frictionless rod-shaped particles (bottom)
with U1(y) ¼ κsin(2πy=Ly)x̂. Shown are (a) the volume fraction f; (b) the viscous number J; (c) the macroscopic friction coefficient μ; and (d) the suspension
temperature Θs, with predictions given by solid green lines and simulation data in red points, for �f ¼ 0:595 and μp ¼ 0:1. Prediction using constitutive laws of
μ(J) rheology [6] are shown using blue dashed lines. The same quantities are shown in (e)–(h) for the system of frictionless rods for �f ¼ 0:615 and AR ¼ 1:5.

INHOMOGENEOUS RHEOLOGY OF DENSE SUSPENSIONS 431
 22 M

ay 2025 12:06:31



acknowledges support from the Royal Academy of
Engineering under the Research Fellowship scheme. We are
grateful to Anoop Mutneja, Eric Breard, and Ken Kamrin for
discussions.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

All the scripts used to generate the data reported in this
study are available from the corresponding author upon rea-
sonable request.

APPENDIX: NUMERICAL VALUES OF FITTING
PARAMETERS

Shown in Tables I and II are the numerical values of fitting
parameters used in the scaling relations reported above.

REFERENCES

[1] Ness, C., R. Seto, and R. Mari, “The physics of dense suspensions,”

Annu. Rev. Condens. Matter Phys. 13, 97–117 (2022).

[2] Stickel, J. J., and R. L. Powell, “Fluid mechanics and rheology of

dense suspensions,” Annu. Rev. Fluid Mech. 37, 129–149 (2005).

[3] Guazzelli, E., and O. Pouliquen, “Rheology of dense granular suspen-

sions,” J. Fluid Mech. 852, P1–73 (2018).

[4] Houssais, M., C. P. Ortiz, D. J. Durian, and D. J. Jerolmack, “Onset of

sediment transport is a continuous transition driven by fluid shear and

granular creep,” Nat. Commun. 6, 6527 (2015).

[5] Mansard, V., and A. Colin, “Local and non local rheology of concen-

trated particles,” Soft Matter 8, 4025–4043 (2012).

[6] Boyer, F., E. Guazzelli, and O. Pouliquen, “Unifying suspension and

granular rheology,” Phys. Rev. Lett. 107, 188301 (2011).

[7] Tapia, F., M. Ichihara, O. Pouliquen, and E. Guazzelli, “Viscous to

inertial transition in dense granular suspension,” Phys. Rev. Lett. 129,

078001 (2022).

[8] Ovarlez, G., F. Bertrand, and S. Rodts, “Local determination of the

constitutive law of a dense suspension of noncolloidal particles

through magnetic resonance imaging,” J. Rheol. 50, 259–292 (2006).

[9] Baumgarten, A. S., and K. Kamrin, “A general constitutive model for

dense, fine-particle suspensions validated in many geometries,” Proc.

Natl. Acad. Sci. U.S.A. 116, 20828–20836 (2019).

[10] Jop, P., Y. Forterre, and O. Pouliquen, “A constitutive law for dense

granular flows,” Nature 441, 727–730 (2006).

[11] Gillissen, J. J. J., and C. Ness, “Modeling the microstructure and stress

in dense suspensions under inhomogeneous flow,” Phys. Rev. Lett.

125, 184503 (2020).

[12] Saitoh, K., and B. P. Tighe, “Nonlocal effects in inhomogeneous flows

of soft athermal disks,” Phys. Rev. Lett. 122, 188001 (2019).

[13] Bhowmik, B. P., and C. Ness, “Scaling description of frictionless

dense suspensions under inhomogeneous flow,” Phys. Rev. Lett. 132,

118203 (2024).

[14] Kim, S., and K. Kamrin, “Power-law scaling in granular rheology

across flow geometries,” Phys. Rev. Lett. 125, 088002 (2020).

[15] Pähtz, T., O. Durán, D. N. de Klerk, I. Govender, and M. Trulsson,

“Local rheology relation with variable yield stress ratio across dry, wet,

dense, and dilute granular flows,” Phys. Rev. Lett. 123, 048001 (2019).

[16] DeGiuli, E., G. Düring, E. Lerner, and M. Wyart, “Unified theory of

inertial granular flows and non-Brownian suspensions,” Phys. Rev. E

91, 062206 (2015).

[17] Guazzelli, E., “Rheology of dense granular suspensions across flow

regimes,” Phys. Rev. Fluids 9, 090501 (2024).

[18] Nott, P. R., and J. F. Brady, “Pressure-driven flow of suspensions:

Simulation and theory,” J. Fluid Mech. 275, 157–199 (1994).

[19] Gadala Maria, F. A., The rheology of concentrated suspensions, Ph.D.

thesis, Stanford University, Stanford, CA, 1979.

[20] Karnis, A., H. Goldsmith, and S. Mason, “The kinetics of flowing dis-

persions: I. Concentrated suspensions of rigid particles,” J. Colloid

Interface Sci. 22, 531–553 (1966).

[21] Nath, A., and A. Sen, “Acoustic behavior of a dense suspension in an inho-

mogeneous flow in a microchannel,” Phys. Rev. Appl. 12, 054009 (2019).

[22] Hermes, M., B. M. Guy, W. C. K. Poon, G. Poy, M. E. Cates, and

M. Wyart, “Unsteady flow and particle migration in dense,

non-Brownian suspensions,” J. Rheol. 60, 905–916 (2016).

[23] Boyer, F., O. Pouliquen, and E. Guazzelli, “Dense suspensions in

rotating-rod flows: Normal stresses and particle migration,” J. Fluid

Mech. 686, 5–25 (2011).

[24] Fall, A., A. Lemaitre, F. Bertrand, D. Bonn, and G. Ovarlez, “Shear

thickening and migration in granular suspensions,” Phys. Rev. Lett.

105, 268303 (2010).

[25] Matas, J.-P., J. F. Morris, and E. Guazzelli, “Inertial migration of rigid

spherical particles in poiseuille flow,” J. Fluid Mech. 515, 171–195 (2004).

[26] Hampton, R. E., A. A. Mammoli, A. L. Graham, N. Tetlow, and

S. A. Altobelli, “Migration of particles undergoing pressure-driven

flow in a circular conduit,” J. Rheol. 41, 621–640 (1997).

[27] Miller, R. M., and J. F. Morris, “Normal stress-driven migration and

axial development in pressure-driven flow of concentrated suspen-

sions,” J. Non-Newtonian Fluid Mech. 135, 149–165 (2006).

[28] Peerbooms, W., A. van der Heijden, and W.-P. Breugem, “Transient

behavior and steady-state rheology of dense frictional suspensions in

pressure-driven channel flow,” Acta Mech. (in press).

[29] Pouliquen, O., and Y. Forterre, “A non-local rheology for dense granu-

lar flows,” Philos. Trans. R. Soc. A 367, 5091–5107 (2009).

[30] Kim, S., and K. Kamrin, “A second-order non-local model for granular

flows,” Front. Phys. 11, 1–16 (2023).

[31] Bouzid, M., A. Izzet, M. Trulsson, E. Clement, P. Claudin, and

B. Andreotti, “Non-local rheology in dense granular flows,” Eur. Phys.

J. E 38, 125 (2015).

TABLE I. Values of various quantities for different particle friction
coefficient μp.

μp fH
J μJ fIH

J α β

0 0.649 0.13 0.649 0.44 0.37
0.1 0.625 0.25 0.654 0.47 0.43
0.2 0.611 0.31 0.655 0.45 0.45
0.3 0.607 0.34 0.652 0.44 0.44
0.5 0.589 0.38 0.649 0.43 0.43

TABLE II. Values of various quantities for different particle aspect ratio
AR.

AR fH
J μJ fIH

J α β

0 0.649 0.13 0.649 0.44 0.37
1.5 0.680 0.30 0.712 0.49 0.42
2.0 0.627 0.17 0.626 0.42 0.39
3.0 0.569 0.17 0.575 0.40 0.38

432 B. P. BHOWMIK AND C. NESS
 22 M

ay 2025 12:06:31

https://doi.org/10.1146/annurev-conmatphys-031620-105938
https://doi.org/10.1146/annurev.fluid.36.050802.122132
https://doi.org/10.1017/jfm.2018.548
https://doi.org/10.1038/ncomms7527
https://doi.org/10.1039/c2sm25306b
https://doi.org/10.1103/PhysRevLett.107.188301
https://doi.org/10.1103/PhysRevLett.129.078001
https://doi.org/10.1122/1.2188528
https://doi.org/10.1073/pnas.1908065116
https://doi.org/10.1073/pnas.1908065116
https://doi.org/10.1038/nature04801
https://doi.org/10.1103/PhysRevLett.125.184503
https://doi.org/10.1103/PhysRevLett.122.188001
https://doi.org/10.1103/PhysRevLett.132.118203
https://doi.org/10.1103/PhysRevLett.125.088002
https://doi.org/10.1103/PhysRevLett.123.048001
https://doi.org/10.1103/PhysRevE.91.062206
https://doi.org/10.1103/PhysRevFluids.9.090501
https://doi.org/10.1017/S0022112094002326
https://doi.org/10.1016/0021-9797(66)90048-8
https://doi.org/10.1016/0021-9797(66)90048-8
https://doi.org/10.1103/PhysRevApplied.12.054009
https://doi.org/10.1122/1.4953814
https://doi.org/10.1017/jfm.2011.272
https://doi.org/10.1017/jfm.2011.272
https://doi.org/10.1103/PhysRevLett.105.268303
https://doi.org/10.1017/S0022112004000254
https://doi.org/10.1122/1.550863
https://doi.org/10.1016/j.jnnfm.2005.11.009
https://doi.org/10.1016/j.jnnfm.2005.11.009
https://doi.org/10.1007/s00707-024-04106-7
https://doi.org/10.1098/rsta.2009.0171
https://doi.org/10.3389/fphy.2023.1092233
https://doi.org/10.1140/epje/i2015-15125-1
https://doi.org/10.1140/epje/i2015-15125-1


[32] Goyon, J., A. Colin, G. Ovarlez, A. Ajdari, and L. Bocquet, “Spatial

cooperativity in soft glassy flows,” Nature 454, 84–87 (2008).

[33] Bocquet, L., A. Colin, and A. Ajdari, “Kinetic theory of plastic flow in

soft glassy materials,” Phys. Rev. Lett. 103, 036001 (2009).

[34] Bouzid, M., M. Trulsson, P. Claudin, E. Clément, and B. Andreotti,

“Nonlocal rheology of granular flows across yield conditions,” Phys.

Rev. Lett. 111, 238301 (2013).

[35] Kamrin, K., and G. Koval, “Nonlocal constitutive relation for steady

granular flow,” Phys. Rev. Lett. 108, 178301 (2012).

[36] Zhang, Q., and K. Kamrin, “Microscopic description of the granular

fluidity field in nonlocal flow modeling,” Phys. Rev. Lett. 118,

058001 (2017).

[37] Poon, R. N., A. L. Thomas, and N. M. Vriend, “Microscopic origin of

granular fluidity: An experimental investigation,” Phys. Rev. E 108,

064902 (2023).

[38] Robinson, J. A., D. J. Holland, and L. Fullard, “Examination of the

microscopic definition for granular fluidity,” Phys. Rev. Fluids 6,

044302 (2021).

[39] Bernal, J. D., and J. Mason, “Packing of spheres: Co-ordination of ran-

domly packed spheres,” Nature 188, 910–911 (1960).

[40] Singh, A., R. Mari, M. M. Denn, and J. F. Morris, “A constitutive

model for simple shear of dense frictional suspensions,” J. Rheol. 62,

457–468 (2018).

[41] Mari, R., “Shear thickening of suspensions of dimeric particles,”

J. Rheol. 64, 239–254 (2020).

[42] Trulsson, M., “Rheology and shear jamming of frictional ellipses,”

J. Fluid Mech. 849, 718–740 (2018).

[43] Kyrylyuk, A. V., M. Anne van de Haar, L. Rossi, A. Wouterse, and

A. P. Philipse, “Isochoric ideality in jammed random packings of non-

spherical granular matter,” Soft Matter 7, 1671–1674 (2011).

[44] Sacanna, S., L. Rossi, A. Wouterse, and A. P. Philipse, “Observation

of a shape-dependent density maximum in random packings and

glasses of colloidal silica ellipsoids,” J. Phys.: Condens. Matter 19,

376108 (2007).

[45] Anzivino, C., C. Ness, A. S. Moussa, and A. Zaccone, “Shear flow of

non-Brownian rod-sphere mixtures near jamming,” Phys. Rev. E 109,

L042601 (2024).

[46] Mondy, L. A., H. Brenner, S. A. Altobelli, J. R. Abbott, and

A. L. Graham, “Shear-induced particle migration in suspensions of

rods,” J. Rheol. 38, 444–452 (1994).

[47] Nagy, D. B., P. Claudin, T. Borzsonyi, and E. Somfai, “Rheology of

dense granular flows for elongated particles,” Phys. Rev. E 96, 062903

(2017).

[48] Nagy, D. B., P. Claudin, T. Borzsonyi, and E. Somfai, “Flow and rhe-

ology of frictional elongated grains,” New J. Phys. 22, 073008 (2020).

[49] Williams, S. R., and A. P. Philipse, “Random packings of spheres and

spherocylinders simulated by mechanical contraction,” Phys. Rev. E

67, 051301 (2003).

[50] Pabst, W., E. Gregorová, and C. Berthold, “Particle shape and suspen-

sion rheology of short-fiber systems,” J. Eur. Ceram. Soc. 26, 149–160

(2006).

[51] Silbert, L. E., D. Ertaş, G. S. Grest, T. C. Halsey, D. Levine, and
S. J. Plimpton, “Granular flow down an inclined plane: Bagnold

scaling and rheology,” Phys. Rev. E 64, 051302 (2001).

[52] Ness, C., “Simulating dense, rate-independent suspension rheology

using LAMMPS,” Comput. Part. Mech. 10, 2031–2037 (2023).

[53] Allen, M. P., and D. J. Tildesley, Computer Simulation of Liquids

(Oxford University, Oxford, 2017).

[54] Kim, S., and S. Karrila, Microhydrodynamics: Principles and Selected

Applications (Butterworth-Heinemann, Boston, 1991).

[55] Ball, R., and J. Melrose, “A simulation technique for many spheres in

quasi-static motion under frame-invariant pair drag and Brownian

forces,” Phys. A 247, 444–472 (1997).

[56] Radhakrishnan, R. (2017) “Derivation of lubrication forces for unequal

spheres,” Zenodo. https://doi.org/10.5281/zenodo.1137305

[57] Cheal, O., and C. Ness, “Rheology of dense granular suspensions

under extensional flow,” J. Rheol. 62, 501–512 (2018).

[58] Cundall, P. A., and O. D. L. Strack, “A discrete numerical model for

granular assemblies,” Géotechnique 29, 47–65 (1979).

[59] Todd, B. D., J. S. Hansen, and P. J. Daivis, “Nonlocal shear stress for

homogeneous fluids,” Phys. Rev. Lett. 100, 195901 (2008).

[60] Morris, J. F., and F. Boulay, “Curvilinear flows of noncolloidal suspen-

sions: The role of normal stresses,” J. Rheol. 43, 1213–1237 (1999).

[61] Lun, C. K. K., S. B. Savage, D. J. Jeffrey, and N. Chepurniy, “Kinetic

theories for granular flow: Inelastic particles in Couette flow and

slightly inelastic particles in a general flowfield,” J. Fluid Mech. 140,

223–256 (1984).

[62] Jenkins, J. T., and D. Berzi, “Dense inclined flows of inelastic spheres:

Tests of an extension of kinetic theory,” Granul. Matter 12, 151–158

(2010).

INHOMOGENEOUS RHEOLOGY OF DENSE SUSPENSIONS 433
 22 M

ay 2025 12:06:31

https://doi.org/10.1038/nature07026
https://doi.org/10.1103/PhysRevLett.103.036001
https://doi.org/10.1103/PhysRevLett.111.238301
https://doi.org/10.1103/PhysRevLett.111.238301
https://doi.org/10.1103/PhysRevLett.108.178301
https://doi.org/10.1103/PhysRevLett.118.058001
https://doi.org/10.1103/PhysRevE.108.064902
https://doi.org/10.1103/PhysRevFluids.6.044302
https://doi.org/10.1038/188910a0
https://doi.org/10.1122/1.4999237
https://doi.org/10.1122/1.5131238
https://doi.org/10.1017/jfm.2018.420
https://doi.org/10.1039/c0sm00754d
https://doi.org/10.1088/0953-8984/19/37/376108
https://doi.org/10.1103/PhysRevE.109.L042601
https://doi.org/10.1122/1.550522
https://doi.org/10.1103/PhysRevE.96.062903
https://doi.org/10.1088/1367-2630/ab91fe
https://doi.org/10.1103/PhysRevE.67.051301
https://doi.org/10.1016/j.jeurceramsoc.2004.10.016
https://doi.org/10.1103/PhysRevE.64.051302
https://doi.org/10.1007/s40571-023-00605-x
https://doi.org/10.1016/S0378-4371(97)00412-3
https://doi.org/10.5281/zenodo.1137305
https://doi.org/10.1122/1.5004007
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1103/PhysRevLett.100.195901
https://doi.org/10.1122/1.551021
https://doi.org/10.1017/S0022112084000586
https://doi.org/10.1007/s10035-010-0169-8

