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Dense suspensions of solid particles in viscous liquid are ubiquitous in both industry and nature,

and there is a clear need for efficient numerical routines to simulate their rheology and microstruc-

ture. Particles of micron size present a particular challenge: at low shear rates colloidal interactions

control their dynamics while at high rates granular-like contacts dominate. While there are es-

tablished particle-based simulation schemes for large-scale non-Brownian suspensions using only

pairwise lubrication and contact forces, common schemes for colloidal suspensions generally are

more computationally costly and thus restricted to relatively small system sizes. Here we present

a minimal particle-based numerical model for dense colloidal suspensions which incorporates Brow-

nian forces in pairwise form alongside contact and lubrication forces. We show that this scheme

reproduces key features of dense suspension rheology near the collodial-to-granular transition, in-

cluding both shear-thinning due to entropic forces at low rates and shear thickening at high rate due

to contact formation. This scheme is implemented in LAMMPS, a widely-used open source code

for parallelized particle-based simulations, with a runtime that scales linearly with the number of

particles making it amenable for large-scale simulations.

I. INTRODUCTION

Dense suspensions of Brownian and non-Brownian solid particles in viscous liquid present intriguing flow properties,

and understanding their rheology is a subject of both fundamental and technological relevance [1, 2]. Of particular

interest are suspensions comprising particles with radius a ≈ 1 µm, or more broadly in the range 0.1−10 µm. These are

present in numerous applications, in all areas of food science [3] and consumer products, as well as across manufacturing

and construction sectors [4] and indeed in many geophysical contexts [5]. Often their physics are challenging because

their Brownian diffusion time may be comparable to the processing or macroscopic timescales involved in their use,

so that they sit at the boundary of colloidal and granular systems [6].

Particle-based simulation offers a promising route to better understand the physics of these materials, providing

highly-resolved information complementary to what can be obtained by experiment. With simultaneous access to

particle trajectories and bulk rheology, one might devise new micromechanical constitutive equations [7] or develop

microstructural insight that could guide the future analysis of experimental data. Numerical models might also be

useful for exploring parameter space and systematically linking aspects of particle-level physics (friction [8], adhe-

sion [9], roughness [10]) to bulk flow behaviour. As a result, one might aim to optimise industrial processes such as

mixing and extrusion or indeed to optimise the design of materials themselves through additives, using insight gained

through particle-based simulation.

Stokesian Dynamics (SD) [11, 12] is a computational method used to simulate the rheological behavior of colloidal

and granular particles suspended in a viscous fluid, addressing the special case of inertia-free flow where the Stokes

number is zero [13]. The method involves balancing all of the forces on each particle by evaluating their velocities

via a grand mobility matrix containing information on the relative positions of every particle in the system. Despite
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accurately capturing the long and short range hydrodynamic interactions between particles, SD has not been adopted

widely as a predictive tool in applied and industrial settings in the same way as other particle-based simulation

methods have, due to the complexity of its implementation and its computational expense (notwithstanding recent

developments that significantly speed it up [14, 15]).

The discrete element method (DEM) [16], on the other hand, is a particle-based computational method (a variant

of molecular dynamics) that is used widely to simulate the behavior of granular materials including powders, particles

and grains taking into account their pairwise interactions. In contrast to SD, DEM does not balance forces on each

particle. Instead inertia is present, and one simply sums the forces and the resultant leads to an acceleration that can

be realised through a conventional time-stepping algorithm such as Velocity-Verlet. This approach has proven to be

useful for studying overdamped suspensions under shear flow nonetheless [17, 18], where one introduces short ranged

lubrication forces and sets the Stokes number to be O(10−2) or smaller. This approach is pragmatic in the sense that

the physics associated with flowing dense suspensions can be implemented in existing, widely-used codes with large

user bases, so that they have a clear path to adoption in engineering and other applied contexts. To date there is

not, to our knowledge, a discrete element method simulation that includes the relevant physics of dense suspensions

at the colloidal-to-granular interface, accounting for short-ranged hydrodynamics, Brownian forces, and (frictional)

particle-particle contacts.

Here we present a minimal particle-based simulation model for predicting the rheology of dense Brownian and

non-Brownian suspensions. Our model comprises hydrodynamic lubrication, particle-particle contacts and Brownian

forces. After first describing the model in detail, we present some aspects of the effective interactions and diffusion

that arise, before giving a detailed account of the rheological predictions of the model. The model reproduces well

the main features of the experimentally observed rheology of dense suspensions, namely a low shear rate plateau that

gives way to shear thinning and later shear thickening as the shear rate is increased, with the relative viscosity of the

suspension increasing sharply with solids volume fraction and particle-particle friction coefficient.

II. METHODOLOGY

We consider a model system of nearly-monodisperse solid spheres, dispersed at high solids volume fraction ϕ in

a density-matched Newtonian liquid. The microscopic physics included in our model represent a minimal set of

ingredients necessary to make useful predictions of the rheology of suspensions comprising particles with radius in the

range 10−7 to 10−4m. The trajectories of individual particles with translational and rotational motion are governed

by Langevin equations that comprise three force (F ) and torque (T ) contributions: direct particle contacts (FC, TC),

hydrodynamics (FH, TH), and Brownian noise (FB, TB). The equations of motion for translation and rotation of

the particles are written, respectively, as

mi
d2xi

dt2
=
∑
j

FC
i,j + F

H,D
i +

∑
j

FH,L
i,j + FB,D

i +
∑
j

FB,L
i,j , (1)

2
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dΩi

dt
=
∑
j

TC
i,j + T

H,D
i,j +

∑
j

TH,L
i,j + TB,D

i,j +
∑
j

TB,L
i,j , (2)

where xi represents the position of particle i, Ωi represents its rotational velocity, and ai and mi are its radius and

mass respectively. The subscript i represents single-body forces and torques acting on particle i, while the subscript

i, j represents pairwise forces and torques acting between particles labelled i and j. The superscripts C, H, B, D, L

refer to the force and torque components arising due to contacts (C), hydrodynamics (H) and Brownian (B) effects,

with the latter two acting both through drag (D) and lubrication (L). Each of these force and torque terms is described

in detail below. These equations of motion can be understood as Langevin equations in which the ⟨·⟩C terms represent

particle-particle interactions; the ⟨·⟩H terms represent configuration-dependent viscous friction (i.e. dissipative forces
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linear in the particle velocities); and the ⟨·⟩B terms represent configuration-dependent (multiplicative) noise. Although

particle inertia is present in the model we omit fluid inertia [19], arguing that for the regimes of interest the principle

contributions to the overall bulk rheology will come from particle-particle contact and hydrodynamic lubrication

interactions. Particles are subjected to a liquid flow field given by U∞ (acting through the body force FH,D
i as

described below), leading to a rate of strain tensor E = 1
2

(
∇U∞ + (∇U∞)T

)
. Pairwise forces and torques are summed

over the neighbours j of each particle i, and the positions, velocities and acceleration are updated in a stepwise manner

following the Velocity-Verlet algorithm [20]. Below we describe each of the force and torque contributions in detail;

shown in Figure 1 are illustrative schematics of each of the forces.

A. Contact forces and torques

The particle-particle contact force FC follows a conventional granular-type interaction [16], and is activated for any

two particles i and j for which the centre-to-centre distance |ri,j | is smaller than the sum of the radii ai+aj . Contact

forces include a repulsive part acting normal to the pairwise centre-to-centre vector ri,j (we define a unit vector

ni,j = ri,j/|ri,j |), and a tangential part. For simplicity we model contacts as linear springs, so that particle pairs

experience repulsive contact forces proportional to their scalar overlap, defined once in contact as δi,j = (ai+aj)−|ri,j |.
The implementation of our model within LAMMPS [21] nonetheless allows straightforward implementation of more

complex δi,j dependence. Tangential forces are linear in ξi,j , a vector describing the accumulated displacement of

the particle pair perpendicular to ni,j since the initiation of the contact. Contact force and torque magnitudes are

controlled by normal and tangential stiffness constants kn and kt that set the hardness of the particles. The force and

torque are given respectively by:

FC
i,j = knδi,jni,j − ktξi,j , (3)

TC
i,j = ai(ni,j × ktξi,j). (4)

We additionally introduce a static friction coefficient µ that constrains the tangential force to |ktξi,j | ≤ µknδi,j . For

larger values of ktξi,j the tangential part of the force and the torque are truncated, and particle contacts transition

from a rolling to a sliding regime. We present data for µ = 0 throughout, except in Figure 6(b)-(c) where we explore

the role of contact friction. Each pairwise contact between particles i and j contributes to the overall contact stress

of the system with a tensorial stresslet given by the outer product −FC
i,j ⊗ ri,j . The contact stress ΣC

i,j is obtained by

summing this quantity over all contacting particle pairs and dividing by the system volume and dimension.

Contact forces of this kind have successfully been deployed in numerical models for rate-independent granular

suspension rheology [17, 22, 23] and for models of shear thickening suspensions [8] (in the latter case rate dependence

arises from a ‘critical load’ that the contact force must exceed before static friction is activated).

B. Hydrodynamic forces and torques

In general, hydrodynamic interactions in suspensions appear as single particle drag forces FH,D, pairwise near-

contact lubrication forces FH,L, and many-body long range forces. In high volume fraction dense suspensions, how-

ever, it is argued by many authors that the hydrodynamic interactions are dominated by near-contact lubrication

interactions [24] (which diverge on close approach) and that long range interactions are effectively screened by in-

tervening particles [8, 25]. We follow this reasoning and therefore omit long range hydrodynamics from our model.

Below we describe in detail the drag and lubrication forces deployed in the model. Single particle drag forces and

torques are given by

FH,D
i = 6πηai(U

∞(xi)−Ui), (5)
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FIG. 1. Snapshot of simulation box, and schematics of the leading pairwise force terms present in the model. In all cases the
leading component of the pairwise force acts along the (positive or negative) direction of the unit vector ni,j pointing from the
centre of particle i to the centre of particle j. (a) Snapshot of the simulation box showing particles of radius a (red) and 1.4a
(blue). Particles are mixed in approximately equal volume. (b) Contact force, with force acting along ni,j ; shown from left to
right are [i] sketch of contacting particles i and j, with the overlap δi,j shown in green; [ii] the unit vector ni,j pointing from the
centre of particle i to j; [iii] repulsive contact FC forces acting along the positive and negative directions of ni,j . (c) Pairwise
hydrodynamic lubrication force, with force set by the component of the relative particle velocity acting along ni,j ; Shown from
left to right are [i] sketch showing the velocity vectors U of neighbouring particles i and j; [ii] the relative velocity Uj−Ui breaks
down into tangential (yellow) and normal (red) components, with the latter pointing along ni,j ; [iii] lubrication forces act along
the positive and negative directions of ni,j , proportional to the normal part of the relative velocity. (d) Pairwise Brownian
lubrication force with a random pairwise vector θi,j projected onto ni,j . Shown from left to right are [i] neighbouring particles
with centre-to-centre unit vector ni,j ; [ii] random vectors θi,j drawn from a Gaussian distribution (green) are projected onto
ni,j by the tangential (yellow) and normal (red) operators; [iii] Brownian forces act along the positive and negative directions
of ni,j , proportional to the normal part of the random vector.

TH,D
i = 8πηa3i (Ω

∞ −Ωi), (6)

where we use the isolated-particle Stokes terms and, for simplicity, do not introduce volume fraction dependent

hindrance functions. Here η is the liquid viscosity, U∞(xi) is the value of the liquid streaming velocity at the position

of the centre of mass of particle i, and Ω∞ = 1
2 (∇×U∞) (spatially uniform assing U∞ is uniform in space). The

drag forces lead to a per particle stress given by ΣH,D
i = 20

3 πηa
3
i E.

For pairwise lubrication forces and torques acting between interacting particles i and j we start from the conventional

representation given by Kim and Karrila [26] as



FH,L
i,j

FH,L
j,i

TH,L
i,j

TH,L
j,i

ΣH,L
ii

ΣH,L
j,i


= ηR



U∞(xi)−Ui

U∞(xj)−Uj

Ω∞ −Ωi

Ω∞ −Ωj

E
E


, (7)

where R is the resistance matrix containing tensorial operations that linearly couple particle forces (torques) to

velocities (rotational velocities), taking into account relative particle positions. After some algebra and omitting

terms that vanish with the size of the interparticle gap (see Radhakrishnan [27] for details) one can obtain the forces
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in a simplified pairwise form as

FH,L
i,j = −FH,L

j,i =
(
XA

11Ni,j + Y A
11Ti,j

)
(Uj −Ui)

+ Y B
11(Ωi × ni,j)

+ Y B
21(Ωj × ni,j),

(8)

where FH,L
i,j is the force acting on particle i by particle j; N = ni,j⊗ni,j is a tensorial normal operator; T = I−ni,j⊗ni,j

is a tensorial projection operator; ni,j is the unit vector pointing from particle i to particle j; Ui is the velocity of

particle i; Ωi is the rotational velocity of particle i; and I is the identity tensor in three dimensions. The scalar

prefactors X and Y encode the geometry of the interacting pair, namely the size of the interparticle gap and the size

ratio of the interacting particles. Their superscripts A, B and subscripts 11, 22 are more appropriate to the labelling

convention used by Kim and Karrila [26] but nonetheless we retain them here for ease of referencing to that work. The

particle size ratio is written as β = aj/ai and the dimensionless interparticle gap is ξ = 2 (|ri,j | − (ai + aj)) /(ai+aj).

The scalar prefactors are given by

XA
11 = 6πηai

(
2β2

(1 + β)3
1

ξ
+
β(1 + 7β + β2)

(5(1 + β)3)
ln

(
1

ξ

))
,

(9)

Y A
11 = 6πηai

(
4β(2 + β + 2β2)

15(1 + β)3
ln

(
1

ξ

))
, (10)

Y B
11 = −4πηa2i

(
β(4 + β)

5(1 + β)2
ln

(
1

ξ

))
, (11) Y B

21 = −4πηa2j

(
β−1(4 + β−1)

5(1 + β−1)2
ln

(
1

ξ

))
. (12)

Meanwhile the torques on particle i and j as a result of their interaction with particles j and i respectively are written

as

TH,L
i,j = Y B

11(Uj −Ui)× ni,j − Ti,j

(
Y C
11Ωi + Y C

12Ωj

)
, (13)

TH,L
j,i = Y B

21(Uj −Ui)× ni,j − Ti,j

(
Y C
21Ωi + Y C

22Ωj

)
, (14)

with scalar prefactors given by

Y C
11 = 8πηa3i

(
2β

5(1 + β)
ln

(
1

ξ

))
, (15) Y C

12 = 8πηa3i

(
β2

10(1 + β)
ln

(
1

ξ

))
, (16)

Y C
22 = 8πηa3j

(
2β−1

5(1 + β−1)
ln

(
1

ξ

))
, (17) Y C

21 = 8πηa3j

(
β−2

10(1 + β−1)
ln

(
1

ξ

))
. (18)

Similar expressions may be obtained for the elements of the hydrodynamic lubrication stress tensor, though these can

be shown to be equivalent (up to an order ξ term in the normal stresses) to the form used for the contact forces. The

contribution to the hydrodynamic stress coming from each pairwise interaction is thus given by ΣH,L
i,j = −FH,L

i,j ⊗ri,j .
To mitigate against divergence in the scalar prefactors at particle contacts (that is, where ξ → 0) we use ξeff = 10−3

in the calculation whenever ξ < 10−3. We do not calculate pairwise lubrication forces when particles are separated

by gaps ξ > 0.05, having verified that this choice does not affect our conclusions.

C. Brownian forces and torques

To satisfy fluctuation-dissipation theorem, we must produce Brownian forces that follow

⟨FB ⊗FB⟩ =
2kbT

∆t
R, (19)
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where FB is a list of the Brownian forces and torques, R is the overall resistance operator for the system (taking into

account both one body and pairwise hydrodynamic dissipation that we describe separately below), kbT is the thermal

energy and ∆t is the computational timestep (discussed in more detail below).

For one-body Brownian forces we need 6 random numbers (i.e. two vectors in three-dimensional space ψi and φi)

to satisfy the translational and rotational degrees of freedom of each particle i. The elements of the random vectors

ψi, φi are drawn from a Gaussian distribution and satisfy ⟨φαφβ⟩ = ⟨ψαψβ⟩ = δαβ and they are uncorrelated with

each other so that ⟨φαψβ⟩ = 0. The following forces and torques satisfy fluctuation-dissipation theorem (we label

them as Brownian drag ‘B,D’ to align with the hydrodynamic drag forces and torques defined above). The one-body

Brownian force and torque on particle i are given by:

FB,D
i =

√
2kbT

∆t

√
6πηaiψi, (20)

TB,D
i =

√
2kbT

∆t

√
8πηa3iφi. (21)

Averaging ⟨FB,D
i ⊗FB,D

i ⟩ and ⟨TB,D
i ⊗TB,D

i ⟩ over many realisations of the vectors ψi and φi leads, respectively, to
2kbT
∆t 6πηaiI and

2kbT
∆t 8πηa3i I as required (with I the identity matrix in three dimensions).

Pairwise Brownian forces and torques similarly require two random vectors θi,j and χi,j (independent of ψi and φi

but with the same properties) to satisfy the relative translational and rotational motion of two interacting particles.

The pairwise forces and torques must be constructed in such a way that, for particles i and j, averaging ⟨FB,L
i,j ⊗FB,L

i,j ⟩
and ⟨TB,L

i,j ⊗TB,L
i,j ⟩ over many realisations of θi,j and χi,j recovers the form of the pairwise hydrodynamic lubrication

forces and torques described above. Doing so, which involves exploiting that the normal and projection operators

present in the definition of the lubrication forces and torques are idempotent (i.e. ⟨(Ni,jθi,j)⊗ (Ni,jθi,j)⟩ = Ni,j) and

orthogonal (i.e. ⟨(Ni,jθi,j) ⊗ (Ti,jθi,j)⟩ = 0), one obtains the following expressions for the pairwise Brownian force

and torque

FB,L
i,j = −FB,L

j,i =

√
2kbT

∆t

(√
XA

11Ni,j +
√
Y A
11Ti,j

)
θi,j , (22)

TB,L
i,j =

√
2kbT

∆t

(
Y 11
B√
Y 11
A

θi,j × ni,j +

√
Y 11
C −

(Y 11
B )2

Y 11
A

Tχi,j

)
, (23)

TB,L
j,i =

√
2kbT

∆t

(
Y 21
B√
Y 11
A

θi,j × ni,j +

√
Y 22
C −

(Y 21
B )2

Y 11
A

Tχi,j

)
. (24)

Our model thus involves computing Equations 1 and 2 to evaluate the trajectory of each particle, subject to imposed

forces given by Equations 3, 5, 8, 20, and 22, and torques given by Equations 4, 6, 13, 14, 21, 23 and 24.

D. Brownian stress calculation

One can similarly obtain from fluctuation-dissipation theorem an expression for the Brownian stress resulting from

the pairwise interaction between particles i and j that averages over many realisations so that ⟨ΣB,L
i,j ⊗ΣB,L

i,j ⟩ recovers
the form of the hydrodynamic lubrication stress, but as described above this can similarly be shown to be equivalent

to ΣB,L
i,j = −FB,L

i,j ⊗ ri,j . Since the pairwise Brownian force term contains the normal operator Ni,j acting on the

random vector θi,j , one obtains a prefactor in the stress containing the dot product ni,j · θi,j . This quantity will
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always approach zero when averaged over many realisations of θi,j , so that the Brownian stress computed in this way

averages to zero. Nonetheless, particle pairs do experience non-zero Brownian forces acting at all timesteps that will

influence their trajectories so that the resulting contact and lubrication stresses will be altered by the presence of the

Brownian forces. Below we describe a method that allows us to estimate the contribution of Brownian motion to the

overall stress.

It is important to note here that our method, in which particle inertia is accounted for, is fundamentally different to

other computational approaches, notably Stokesian Dynamics (SD) [11, 13, 28] in which the trajectories are evolved

with a timestep longer than the inertial one. In the latter methods (see in particular Banchio and Brady [12]) the

Brownian stress for the overall system is obtained as ΣB = kbT∇·(RSU ·R−1
FU ), in practice using a midpoint scheme in

which the positions and velocities of every particle are sampled at some increment of the overall timestep. Here RSU

and RFU represent parts of the overall resistance matrix that couple, respectively, stresses to velocities and forces to

velocities. Our method described above is based on the Langevin equation so that particle inertia is small but present,

and force balance is not strictly achieved at each timestep. In order to obtain an estimate of the Brownian contribution

to the stress, we deploy a structural method that exploits the anisotropy of the radial distribution function, using the

approach described by Brady [29]. The Brownian stress attributable to the pair i, j can be written as

ΣB
i,j = −nkbTa

∫
S2

(ni,j ⊗ ni,j)p1/1(xj |xi)dS2, (25)

where p1/1(xj |xi) is the probability density for finding a particle at xj given that there is a particle at xi, and

n = N/V is the number density of particles in the suspension (where V and N are the system volume and particle

number respectively). The integral is over the surface of contact S2 of two touching particles.

To compute this function we sum for each particle the diadic product of its unit vector with each of its neighbours

within a thin shell ∆ = 0.05ai, so that for a given configuration the Brownian contribution to the stress is [30]:

ΣB = −kbT
V

∑
i

ai
∆

∑
j∈∆

(ni,j ⊗ ni,j). (26)

The stress measured by this approach is not added to the hydrodynamic and contact stresses computed in our model,

but is available to provide insight into the role of Brownian motion in setting the overall material response.

E. Additional simulation details

We simulate O(103) spherical particles of radius a and 1.4a (mixed approximately equally by volume) in a cubic

periodic simulation box of length L. For each set of flow conditions we carried out between 10 and 800 realisations

in order to obtain satisfactory ensemble averages. The principle particle properties (these set the length, mass and

time scales) are the characteristic particle radius a [length], the particle density ρ [mass/length3] (taken throughout

to be equal to the fluid density so that the particles are neutrally buoyant), and the particle normal stiffness kn
[mass/time2] (this has a tangential counterpart kt). With respect to these quantities, 1 time unit corresponds to the

inverse frequency of a mass ρa3 = 1 on a linear spring with stiffness kn = 1. The remaining material properties to be

defined are the fluid viscosity η [mass/(length×time)] and the particle-particle friction coefficient µ [dimensionless],

relevant for micron sized (and larger) particles. The thermal energy scale in the system is set by kbT .

The simulation box is deformed according to a specified ∇U∞. For instance, when the only nonzero element

of ∇U∞ is an off-diagonal (say γ̇), shearing is applied by tilting the triclinic box (at fixed volume) according to

Lxy(t) = Lxy(t0)+Lγ̇t. When the strain (γ = γ̇t, with t the time for which the simulation has run) reaches 0.5 in this

example, the system is remapped to a strain of -0.5. This has no effect on the particle-particle forces or on the stress,

and is simply a numerical tool to permit unbounded shear deformation while preventing the domain from becoming

elongated in one axis [31]. Reported in the following is the relative viscosity of the suspension ηr = Σxy/ηγ̇, with Σxy

the shear component of the stress tensor, γ̇ the shear rate and η the fluid viscosity.
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F. The timescales that appear in the simulation

The full list of dimensional parameters taken as inputs to the model is then a, L, t, ρ, kn, kbT , η and γ̇. Taking

a/L≪ 1 and γ̇t≫ 1, dimensional analysis dictates that we require three non-dimensional groups to fully characterise

this system. In other words, a measured non-dimensional quantity e.g. the reduced viscosity ηr = Σxy/ηγ̇, can be

a function of at most three non-dimensional control parameters. This is in addition to non-dimensional inputs viz.

the volume fraction ϕ and the friction coefficient µ. Central to our work will be the study of viscosities as a function

of Peclet number, since this latter quantity will control the colloidal to granular crossover. It is desirous to choose

the remaining two non-dimensional control parameters such that particles are effectively hard and non-inertial. To

obtain an appropriate set of non-dimensional control parameters, we consider the following list of timescales present

in the model (in which we only include dimensional elements for simplicity):

τC =

√
ρa3

kn
, (27) τI =

ρa2

η
, (28) τB =

ηa3

kbT
, (29) τS =

1

γ̇
. (30)

The contact time τC is a characteristic time spent by two particles in contact (assuming contacts are describable

as linear springs), in the absence of other forces playing a role. It is obtained by solving the following equation of

motion for the overlap δ between contacting particles: ρa3(d2δ/dt2) = knδ. The inertial relaxation time τI is the

characteristic time taken for the velocity of a particle to reach that of the background fluid in the absence of other

forces. It is obtained by solving the following equation of motion for the velocity v of a particle: ρa3(dv/dt) = ηav.

The Brownian time τB is the characteristic time take for a particle to diffuse by a distance equal to its own radius

under thermal motion in the absence of other forces. The convective timescale τS is simply the inverse of the shear

rate. To resolve each of these timescales accurately within the simulation we chose the numerical timestep to be

substantially smaller than the smallest of the timescales listed above. The Peclet number (Pe) described above is

given by 6πτB/τS = 6πηa3γ̇/kbT , and we vary this quantity across a broad range from 0.01 to 100000, aiming to

explore the colloidal to granular transition.

The contact time τC should be chosen to be sufficiently small that overlaps between particles are orders of magnitude

smaller than the particle radii, such that particles be considered hard spheres. To do this we ensure throughout that

τc is at least an order of magnitude smaller than the next smallest timescale. The role of particle inertia can be

expressed via (i) a particle Reynolds number τI/τS = ρa2γ̇/η, and (ii) an inertia-diffusion ratio τI/τB = ρkbT/η
2a.

Below we explore how small each of these quantities need to be set in order to ensure inertia plays no significant role

in the measured results.

III. RESULTS: INTERACTIONS AND DIFFUSION

A. Two-particle simulations measuring the effective potential

To evaluate the net pairwise potential resulting from the particle-level forces described above, we carried out O(103)

simulations of two particles with radii a in a cubic periodic box of length 4a (see snapshot in Figure 2(a) Inset) subject

to all of the forces described above, and with U∞ = 0. We calculate the radial distribution function g(r) with r = |ri,j |
and averaged this across timesteps in the steady state and across all realisations (Figure 2(a)), then obtained the

potential of mean force as U(r)/kbT = − ln(g(r)), Figure 2(b). The result confirms that there is no net potential

acting between particles when they are not in contact (i.e. when r > 2a), so the lubrication and Brownian forces

do not introduce an overall repulsion or attraction. When particles are in contact (r/(ai + aj) < 1) there is a steep

repulsive potential that, as expected, is related to the stiffness of our contacts defined above as U(r)/kbT = 0.5knδ
2
i,j .

The model thus approximates a suspension of colloidal hard spheres, in which the particle-particle interaction is zero

and infinite for non-contacts and contacts respectively.
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Eq.31
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∝ t

τI /τB

ϕ = 0.001 τI /τB = 1.7

0.001
0.36
0.50

Eq.31
∝ t2
∝ t

ϕ

0.001
0.36
0.50

ϕ

Eq.31

τI /τB = 1.7

17
1.7
0.17

τI /τB

0.017

FIG. 2. Evaluating the potential of mean force and the diffusion properties that arise from the particle-level forces described
above, in the absence of shear flow. (a) The radial distribution function g(r) (with r = |ri,j |) computed from a two particle
simulation [Inset: snapshot of simulation]; (b) Potential of mean force U(r), showing measured result (points) and the input
particle stiffness (solid line); (c)-(d) Mean squared displacement as a function of elapsed time for (c) three values of the timescale
ratio τI/τB at ϕ = 0.001; (d) three values of ϕ at τI/τB = 1.7; (e) Diffusion coefficient as a function of elapsed time for a range
of ϕ at τI/τB = 1.7. The solid line in (c)-(e) represents the predictions of Equation 31; (f) Long time diffusion coefficient at a
broad range of ϕ and τI/τB .

B. Mean square displacement

We next verify that our simulated particles follow statistically the anticipated trajectories by computing their mean

squared displacement (MSD) under various conditions. An isolated particle with motion governed by the single body

drag and Brownian forces described above is expected to follow a trajectory with a short-time ballistic part and a

long-time diffusive part that leads to an overall MSD given by [32, 33]:

⟨x2⟩ = 2kbT
m

γ2

( γ
m
t− 1 + e−

γ
m t
)
, (31)

with m = (4/3)πρa3 and γ = 6πηa. This expression gives ⟨x2⟩ ∼ t2 and ⟨x2⟩ ∼ t at small and large times respectively.

It can equivalently be written in terms of our characteristic timescales defined above as:

⟨x2⟩/a2 =
2

27π

τI
τB

(
4.5

t

τI
− 1 + e

−4.5 t
τI

)
, (32)

Shown in Figure 2(c) are MSDs for a dilute sample with ϕ = 0.001 in which pairwise particle-particle interactions

are absent. In terms of our model timescales, we set τS = ∞ (i.e. no shear); τC = 10−3; τI = 10−1; and we vary τB
to explore the behaviour at different temperatures. We measure the elapsed time in units of τI , so that the crossover

from ballistic to diffusive behaviour begins in each case at t/τI ∼ 1. As expected based on the expression above,

increasing temperature (which decreases τB) while keeping all other variables constant simply shifts the MSD result

vertically with ⟨x2⟩ ∼ kbT .

We next calculate the MSD for a series of larger ϕ, with results shown in Figure 2(d)-(e). In all cases the particles

follow a ballistic trajectory at short times that is roughly independent of ϕ. The longer time behaviour shows a

decreasing diffusion coefficient (D = d/dt(⟨x2⟩)) with increasing ϕ, a consequence of pairwise hydrodynamic and

contact interactions resisting particle motion. For all volume fractions below jamming D approaches a constant at
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long time scales, confirming the presence of a diffusive regime.

In order for inertia to play a negligible role in our model, it is important for the diffusive timescale to be longer than

the inertial relaxation one. In other words, the time taken for a particle velocity to relax to that of the background fluid

should be much shorter than the time taken for the particle to diffuse by its own radius. To understand quantitatively

how to achieve this, we measured D for varying τI/τB across a broad range of ϕ. The normalized long time diffusion

coefficient (D(ϕ)/D0) is shown in Figure 2(f), with D0 = kbT/πηa(= a2/τB). Our result shows that when τI/τB
is smaller than 0.17, D(ϕ)/D0 becomes independent of temperature and follows a linearly decreasing trend. This

suggests a criteria for the maximum value of τI/τB , which we check under shearing conditions in the following.

IV. RESULTS: RHEOLOGY

In the following we first describe the need for substantial ensemble averaging, especially when Brownian motion

dominates, and we demonstrate the convergence of the measured rheology with the size of the sampling window.

We next go on to expose the role of particle inertia in our model under shear, and establish the parameter range in

which it can be assumed negligible. We then present rheology data showing ηr as a function of Pe, highlighting the

breakdown of the individual contributions (hydrodynamic, contact and Brownian) and their variation with volume

fraction. We finally demonstrate the role of particle contact friction and a short-ranged repulsive potential.

A. Averaging method

All of the rheology simulations described in the following were carried out with O(103) particles, comprising an

approximately equi-volume mixture of those with radius a and 1.4a. Given the comparatively small number of particles

(compared to a real experimental system, for instance) and the random nature of the Brownian forces added to the

system, the stress signals output by a single simulation are extremely noisy, especially at low Pe. (The same is true

for inertia-free simulations [34], though the error bars are rarely reported.) Thus the number of realisations that must

be averaged over to obtain smooth data and reliable estimates of the true rheology increases as Pe is reduced.

Shown in Figure 3(a) is the range of measured ηr as a function of the number of steady state snapshots averaged

over, for 3 different Pe. At low Pe one must sample the system ≈ 108 times to obtain a measurement of ηr with

standard deviation less than 10%, whereas for large Pe 105 samples are sufficient. Importantly, the time taken to

reach steady state also differs drastically with Pe. For systems dominated by thermal fluctuation (i.e. low Pe) the

(a) (b) (c)

η B
,GKη r

Sample size Number of particles

R
un

 ti
m

e 
(s

)

ϕ = 0.5

Pe = 10−2

Pe = 1
Pe = 104

ϕ
0.45
0.5
0.525
0.55
0.575
(1 − exp(−t /τϕ))ηϕ

t /τB

FIG. 3. Computing the suspension viscosity ηr under sheared and non-sheared conditions, and the scaling of computational
run time with system size. Shown in (a) is the convergence of the measured ηr as a function of the number of snapshots averaged
over, for Pe = 0.01 (red), 1 (green) and 100. (blue) The noisy stress signal when Brownian motion dominates necessitates large
numbers of realisations. In (b) is ηB,GK measured via the Green-Kubo relation taking the autocorrelation of the Brownian
shear stress as input, plotted as a function of the correlation time; (c) Simulation run time versus number of particles for
ϕ = 0.5, Pe = 1, when running a serial compilation of LAMMPS on a single processor. We show data for a short simulation
comprising 107 timesteps.
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(b)(a)

ϕ = 0.5

Pe = ∞

τI /τS τI /τB

η′ rη′ r
10−2
1
4.6
102

104
460

ϕ = 0.45

Pe

FIG. 4. Establishing the parameter range in which particle inertia can be neglected. (a) Suspension viscosity ηr (rescaled by
the low τI/τS value) plotted against the timescale ratio τI/τS = ργ̇a2/η (the Stokes number) for kbT = 0 (so that τB = ∞) and
ϕ = 0.55, showing that our rheology results are rate-independent and therefore inertia-free for τI/τS ⪅ 0.1; (b) ηr (rescaled by
the low τI/τB value) plotted against the timescale ratio τI/τB = ρkbT/η

2a for τI/τS < 0.01 and ϕ = 0.45. Shown are various
values of Pe.

approach to steady state is set by the passage of Brownian time as opposed to the accumulated strain, with systems

at ϕ = 0.54 and below taking 3–4 Brownian times to reach steady state at Pe = 0.01. For larger ϕ this timescale

is stretched rapidly, likely due to the proximity of glassy physics. At very large Pe, meanwhile, steady states are

reached for strains γ̇t of 1–2 [35].

B. Brownian stress at zero shear rate

To obtain the Brownian contribution to the viscosity in the limit of zero shear rate, we apply the Green-Kubo

method [36] by calculating the time autocorrelation function of the shear stress, taking as input the Brownian stress

computed as described above, for unsheared simulations. The Brownian viscosity is written as:

ηB,GK =
V

kbT

∫ ∞

0

⟨ΣB
xy(t+∆t)ΣB

xy(t)⟩d∆t, (33)

where ΣB
xy is the shear component of the Brownian stress tensor. The stress correlation decreases exponentially with

increasing ∆t so that the Brownian viscosity can be modelled as ηB,GK(t) = ηϕ(1−e−∆t/τϕ). As shown in Figure 3(b),

the correlation time τϕ is short and weakly varying for ϕ < 0.5, so that ηϕ can be measured using readily accessible

data for which ∆t/τϕ is large. For ϕ > 0.5, however, τϕ grows quickly and we estimate ηϕ by extrapolation. The rapid

growth of the correlation time τϕ is likely indicative of a nearby glass transition, though we defer detailed analysis of

this behaviour to future work. By this approach we obtain an estimate of the Brownian contribution to the viscosity

at zero shear rate, which we discuss further in the following.

Given the large quantity of data required for obtaining smooth results, it is worth considering the scaling of the

simulation run time with the system size. To estimate the scaling of the run time we carried out simulations with

N = 101, 102, 103, 104 particles with ϕ = 0.5, running a serial build of LAMMPS on one core for 107 timesteps. The

result shown in Figure 3(c) confirms that our simulation has complexity O(N).

C. The role of inertia

The particle-particle contact timescale τC is set sufficiently small that it does not compare to any other timescale in

the system under any conditions, so that particles can always be considered to be hard. We verify this in Figure 5(b)
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by showing that the relationship between ηr and Pe measured under different values of τC does not vary. It is,

however, crucial that in varying Pe one maintains acceptable values of τI/τS and τI/τB . To determine sufficiently

small values of these two ratios so that inertia may be neglected, we carried out two sets of simulations. In the first

we simulate shear flow with ϕ = 0.55 and kbT = 0 (so we don’t need to consider the Brownian timescale τB), while

varying the dimensionless shear rate τI/τS from 5 × 10−3 to 10. To be in the limit in which inertia is negligible,

we require a linear relation between the shear stress and the shear rate i.e. a Stokes flow. In other words, we are

correctly simulating an inertia-free flow if ηr is independent of τI/τS . From Figure 4(a) we can observe that this holds

for τI/τS ⪅ 10−1. In what follows, we therefore ensure that this inequality holds for all parameter sets. Our result

here is qualitatively consistent with prior simulations [17] and experiments [37, 38], though the value of the Stokes

number at the crossover is apparently highly sensitive to system details.

In the second we simulate shear flow with τI/τS < 0.01, ϕ = 0.45 and at a range of Pe, exploring the relative

importance of inertia by varying the timescale ratio τI/τB . This control parameter essentially sets the distance a

particle will typically cover under ballistic motion. In order for inertia to be negligible in the model, we expect that

this distance should be at least an order of magnitude smaller than the particle size, so that a typical Brownian kick

to a particle does not lead it to collide with a distant neighbour. From our result in Figure 2(b) we find that a ballistic

to diffusive crossover occurs at ⟨x2⟩/a2 = 0.01 for τI/τB = O(10−2). Our shear simulations (Figure 4(b)) similarly

show that ηr is a function of τI/τB only when the latter quantity is > 0.01. Therefore, in what follows we carry out

simulations with τI/τB < 0.01 and τI/τS < 0.1.

D. Flow curves

Our main rheology results are presented in Figure 5. We simulated a broad range of Pe (10−2 − 104), focussing

on three different volume fractions ϕ (Figures 5(a)-(c)) and adhering to the constraints on τI obtained above. To

achieve this range of Pe it was necessary to vary both the shear rate γ̇ and the thermal energy kbT . We present

in Table I a full list of the parameters used to generate the result in Figure 5(a). In each rheology figure we break

the overall viscosity down into its contributions from hydrodynamic, contact and Brownian stresses. The stresses

obtained by taking the outer product of the pairwise vectors and forces evaluated during the simulation run are the

hydrodynamic one, the contact one, and the ‘instantaneous’ Brownian stress. The latter (not shown in Figure 5), as

described earlier, averages to zero so does not lead to a viscosity contribution. The total stress (shown in black in

Figure 5(a)-(c)) is therefore just the sum of the hydrodynamic and contact parts.

As a post-processing step we make an estimate of the effective Brownian stress (approximating the one that would

be measured in a Stokesian Dynamics simulation), following the calculation based on structural anisotropy described

earlier. This gives us the red lines in Figure 5(a)-(c). Interestingly the Brownian stress maps quite closely to the

contact stress for low Pe, indicating that the surge in contact stress observed in this range may be due to short-lived

contacts induced by the Brownian kicks. Indeed the formulation of the Brownian stress is similar to that of the

Pe γ̇ kbT a ρ kn η
0.01 0.00009 0.017 1 0.1 10000 0.1
0.046 0.00042 0.017 1 0.1 10000 0.1
0.22 0.0019 0.017 1 0.1 10000 0.1
1 0.009 0.017 1 0.1 10000 0.1
4.6 0.009 0.0037 1 0.1 10000 0.1
22 0.009 0.00079 1 0.1 10000 0.1
100 0.009 0.00017 1 0.1 10000 0.1
460 0.009 0.000037 1 0.1 10000 0.1
2200 0.009 0.0000079 1 0.1 10000 0.1
10000 0.009 0.0000017 1 0.1 10000 0.1

TABLE I. The parameters used to generate each data point in Figure 5(a).
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kn = 2500
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y

FIG. 5. Rheology and microstructure of dense suspensions at the transition from Brownian to non-Brownian flow. Shown
in (a)-(c) are the suspension viscosity ηr as functions of Pe, for frictionless particles with (a) ϕ = 0.45; (b) ϕ = 0.5 (shown
also are results for two additional values of kn); (c) ϕ = 0.55, showing the contributions from contacts, hydrodynamics and
Brownian forces. In (d) is the total viscosity as a function of Pe and ϕ. In (e)-(g) are slices through the three-dimensional radial
distribution function g(ri,j) showing the flow-gradient (xy) plane under steady state simple shearing conditions for ϕ = 0.5
and (e) Pe = 0.01; (f) Pe = 1; (g) Pe = 10000.

contact stress, differing only in the presence of the contact overlap δi,j appearing in the latter.

Overall we find that the predicted rheology corresponds well with canonical results, both in the experimental

literature [39, 40] and those obtained by Stokesian Dynamics simulation [41] and similar numerical methods [34]. At

all volume fractions there is a shear thinning region for Pe < 1 that gives way to shear thickening beyond Pe > 1,

with the ηr values at large Pe tending towards those reported for non-Brownian suspensions under a very similar

numerical framework [23]. For ϕ = 0.45 and ϕ = 0.5 we observe a low Pe plateau, whereas at ϕ = 0.55, ηr apparently

continues to increase with decreasing Pe. The latter effect is perhaps an artefact of proximity to a glass transition,

though we defer a more detailed study of this effect to future work due to the diverging timescales involved. The

hydrodynamic stress increases weakly with increasing Pe, whereas the contact stress qualitatively follows the overall

stress in its shape. The increase in contact viscosity at high Pe may be attributed to the onset of contact force chains

as the system approaches the non-Browian limit and can be considered granular [42], while at low Pe it is related to

the Brownian forces as described above.

Shown in Figure 5(d)-(f) are slices through the three dimensional radial distribution function g(ri,j), showing the

flow-gradient (xy) plane at Pe = 0.01, Pe = 1 and Pe = 104. The general shape of the pairwise distributions is

consistent with literature data [43], showing increased anisotropy with increasing Pe and a sharpening of the peaks

at a+ a, a+ 1.4a and 1.4a+ 1.4a.
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E. Viscosity variation with volume fraction

In order to understand better the limiting behaviour at small Pe, we determine the behaviour of ηr as a function

of ϕ. To do so we first evaluate the Brownian contribution to the zero shear viscosity using the Green-Kubo method

described above. To obtain an estimate of the full viscosity, we take the value of the hydrodynamic viscosity at the

smallest (non-zero) measured Pe, and add this to the Green-Kubo prediction of the Brownian stress (assuming the

latter to be a good proxy for the contact stress, as was assumed by Brady [29] and is supported by our simulation

data in Figure 5). Doing so at a range of ϕ, and comparing the result to the minimum ηr measured at Pe = 4.6 for

each ϕ as well as the large Pe limit, we obtain Figure 6(a).

In both the low and high Pe limits, we find that ηr, particularly at large ϕ, can be fit relatively well with a simple

relation as ηr ≈ (1 − ϕ/ϕJ)
−λ, with ϕJ(Pe → 0) = 0.587 and ϕJ(Pe = 104) = 0.642 (and λ ≈ 1.5, similar to Mari

et al. [44]). At intermediate Pe, ηr is reduced relative to its value in the the non-Brownian limit, and the value of

ϕJ is marginally increased. The large Pe value of ϕJ will be highly sensitive to details of the particle-particle contact

interaction, especially the presence of a static friction coefficient as we have reported elsewhere [23, 45]. In particular,

for large friction coefficients the large Pe value of ϕJ (usually denoted ϕm) will likely drop below the low Pe value.

In this scenario one expects flow curves near jamming to be diverging at both low and high Pe, with finite ηr at

intermediate Pe. We leave this complexity to be explored in future work, and in the following we examine the role of

friction for a small range of ϕ.

F. Role of particle-particle friction and short-ranged repulsion

In the context of experimental work by Guy et al. [6], it is important to consider the role of particle friction at the

colloidal-to-granular transition. Since granular particles are large, micron size objects they will likely have a static

friction coefficient, which may constitute both sliding and rolling components [45, 46]. So far we have only considered

a model system of frictionless particles. It is well-established that the presence of static sliding friction means that

each particle-particle contact will constrain more than one degree of freedom of each particle, so that for large friction

coefficients (in practice µ ⪆ 0.5) a rigid packing can be obtained with a per particle contact number of ≈ 4 (as opposed

to 6 for frictionless spheres), with limiting volume fraction ϕm ≈ 0.57. In Figure 6(b) we report rheology predictions

from simulations of suspensions with a range of particle-particle friction coefficients µ (black data), demonstrating

that the presence of friction leads to a dramatic increase in ηr at large Pe. This behaviour, and its sensitivity to ϕ

demonstrated in Figure 6(c) (black data), is qualitatively consistent with the large literature on friction-driven shear

thickening e.g. Mari et al. [44]. Notably, ηr at lower Pe is unaffected by friction, suggesting that Brownian forces

suppress the mobilisation of static friction for all µ, at least at ϕ = 0.5. In this respect the Brownian forces act

(a) (b)
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η r
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η r
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Pe = 104
ηr = (1 − ϕ /0.64)−1.59

ηr = (1 − ϕ /0.59)−1.54
ηr,GK

0
μ

0.1
0.5
1

ϕ = 0.5

μ = 0

A /kbT
0
1
102

(c)

η r

Pe

ϕ
0.5
0.55
0.58
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FIG. 6. The viscosity variation with volume fraction and particle-particle contact friction. (a) Variation of ηr with volume
fraction ϕ at three Pe, showing fits to ηr = (1 − ϕ/ϕJ)

−λ; (b) ηr as a function of Pe for several particle-particle friction
coefficients µ and repulsive force magnitudes A/kbT at a volume fraction of ϕ = 0.5; (c) ηr as a function of Pe for several ϕ
and A/kbT , with µ = 0.5. The colour legend in (b) refers also to (c).
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analogously to a weak repulsive potential, inhibiting the formation of sustained particle contacts and rendering the

suspension effectively frictionless even when µ > 0. This leads to a bulk viscosity with rate dependence qualitatively

similar to that of shear thickening suspensions with load-activated friction describable by the canonical model of Wyart

and Cates [47].

Importantly, though, is it not clear that the shear thickening transition, when controlled by Brownian motion, is

governed by a single stress scale. In particular, the range of Pe over which the transition happens in Figure 6(b)

(black data) is rather broad (occurring over 4-5 orders of magnitude in Pe), especially when compared to Mari et al.

[44] in which the transition takes at most 2 orders of magnitude in shear rate. To explore this we introduce a short

ranged repulsive force defined by

FR
i,j =

A

κ
exp

(
(ai + aj)− |ri,j |

κ

)
ni,j , (34)

with κ = 0.01(ai + aj). We show results of this model for A/kbT = 0, 1, 102, 103 in Figure 6(b) and for several ϕ at

µ = 0.5 in Figure 6(c). Introducing a sufficiently large repulsive force scale (in practice we required A/kbT ≈ 100)

narrows the range of Pe over which shear thickening occurs, and shifts the transition to larger Pe. This result suggests

not only an additive effect of Brownian and repulsive forces as reported by Mari et al. [34], but rather a qualitative

change in the functionality of ηr with Pe when the onset of contacts is set by the magnitude of Brownian or repulsive

forces. Examining the subtly in more detail is a promising area in which our model might be deployed. Thus with the

introduction of particle-particle friction and a short ranged repulsive force we can control in our model the position

and extent of shear thickening, providing a flexible starting point from which to make predictions of the rheology in

more specific contexts.

V. CONCLUDING REMARKS

In conclusion, we have implemented a minimal numerical model for the rheology of dense suspensions that incor-

porates sufficient microscopic physics to predict the colloidal to granular crossover as a function of Pe. The model

is implemented in LAMMPS [21] so that its run time scales linearly with the number of particles. The Brownian

component of our model differs from that in Stokesian Dynamics in that we resolve the fluctations at a much shorter,

inertial timescale. The naively-calculated Brownian stress therefore averages to zero over realisations and instead we

compute an estimation of the Brownian contribution to the stress based on the structural statistics measured from the

simulation. This stress follows closely the contact stress that we measure directly from the pairwise forces and relative

positions. The model predicts shear thinning at low Pe, with a low Pe plateau (in some cases) that increases with

volume fraction. At larger Pe a Brownian regime gives way to a contact dominated regime in which particle-particle

interactions proliferate and friction (if present) becomes important. In this latter regime shear thickening is observed

even for zero particle friction, though its extent increases with increasing friction coefficient. We finally introduced

into our model a short range repulsive force, a crucial prerequisite for shear thickening in the paradigmatic model of

non-Brownian suspensions [44]. This keeps particles separated and inhibits the contact contribution to the stress, thus

broadening the intermediate Pe viscosity plateau (as observed by Cwalina and Wagner [48]) or equivalently shifting

the value of Pe at which particle contacts become important.

We have focussed in this article on steady, simple shear rheology. Broadening the work to inhomogeneous conditions

(such as those described by Gillissen and Ness [49]) and to dynamic simple shear to measure the frequency-dependent

(and indeed amplitude dependent [50]) response are promising lines of future research that will provide additional

scope for constitutive model development and for validation against experimental data.

In future we anticipate deploying our code in mixed systems, in which one population of particles are Brownian

and another are non-Brownian [48]. This is motivated by numerous real world examples such as geophysical flows and

many scenarios in chemical engineering and manufacturing. In such systems the small, Brownian particles (in some

industries these are referred to as superplasticizers) will simultaneously contribute a Brownian stress but improve

the efficiency of packing, so that their overall effect on the rheology is non-trivial and likely to be non-monotonic
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and Pe-dependent. Mapping out this complexity as functions of the small and large particle sizes and their relative

numbers requires a tractable numerical model, and will likely rely on the implementation of more advanced neighbour

listing algorithms such as those by Shire et al. [51]. Extending this further to systems with continuous, broad size

distributions remains on open challenge [52].

VI. ACKNOWLEDGEMENTS

Codes and scripts necessary to reproduce the results reported in this article are available on request. C.N. ac-

knowledges support from the Royal Academy of Engineering under the Research Fellowship scheme and from the

Leverhulme Trust under Research Project Grant RPG-2022-095. We thank John Brady, Jeff Morris, Aleksander

Donev, Emanuela Del Gado, Abhay Goyal, Anthony Ge, Romain Mari and Ryohei Seto for useful discussions.

[1] C. Ness, R. Seto, and R. Mari, Annual Review of Condensed Matter Physics 13, 97 (2022).

[2] J. J. Stickel and R. L. Powell, Annual Review of Fluid Mechanics 37, 129 (2005).
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[22] F. Boyer, É. Guazzelli, and O. Pouliquen, Physical Review Letters 107, 188301 (2011).

[23] O. Cheal and C. Ness, Journal of Rheology 62, 501 (2018).

[24] R. Ball and J. R. Melrose, Physica A: Statistical Mechanics and its Applications 247, 444 (1997).

[25] R. V. More and A. M. Ardekani, Journal of Rheology 64, 67 (2020).

[26] S. Kim and S. J. Karrila, Microhydrodynamics: principles and selected applications (Courier Corporation, 2013).

[27] R. Radhakrishnan, https://doi.org/10.5281/zenodo.1137305 (2018).

[28] G. Bossis and J. Brady, Journal of Chemical Physics 91, 1866 (1989).

[29] J. F. Brady, Journal of Chemical Physics 99, 567 (1993).

[30] N. Y. C. Lin, M. Bierbaum, P. Schall, J. P. Sethna, and I. Cohen, Nature Materials 15, 1172 (2016).

[31] C. Ness, Computational Particle Mechanics , 1 (2023).

[32] D. S. Lemons and A. Gythiel, American Journal of Physics 65, 1079 (1997).

[33] A. P. Hammond and E. I. Corwin, Physical Review E 96, 042606 (2017).

[34] R. Mari, R. Seto, J. F. Morris, and M. M. Denn, Proceedings of the National Academy of Sciences 112, 15326 (2015).

[35] C. Ness and J. Sun, Physical Review E 93, 012604 (2016).



17

[36] J.-P. Hansen and I. R. McDonald, Theory of simple liquids: with applications to soft matter (Academic press, 2013).
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