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Abstract

We study granular suspensions under a variety of extensional deformations and simple shear using numerical simulations. The viscosity and
Trouton’s ratio (the ratio of extensional to shear viscosity) are computed as functions of solids volume fraction / close to the limit of zero
inertia. Suspensions of frictionless particles follow a Newtonian Trouton’s ratio for / all the way up to /0, a universal jamming point that is
independent of deformation type. In contrast, frictional particles lead to a deformation-type-dependent jamming fraction /m, which is largest
for shear flows. Trouton’s ratio consequently starts off Newtonian but diverges as /! /m. We explain this discrepancy in suspensions of
frictional particles by considering the particle arrangements at jamming. While frictionless particle suspensions have a nearly isotropic
microstructure at jamming, friction permits more anisotropic contact chains that allow jamming at lower / but introduce protocol
dependence. Finally, we provide evidence that viscous number rheology can be extended from shear to extensional deformations, with a
particularly successful collapse for frictionless particles. Extensional deformations are an important class of rheometric flow in suspensions,
relevant to paste processing, granulation and high performance materials. VC 2018 The Society of Rheology.
https://doi.org/10.1122/1.5004007

I. INTRODUCTION

Industrial and geophysical processes that involve dense sus-
pensions in motion invariably exhibit combinations of shear
and extensional flow [1,2]. To achieve a useful description of
their rheological properties, one must therefore start with a
sound knowledge of the material response to both types of
deformation. Despite this clear requirement, most of the recent
influential developments in the understanding of suspension
rheology (both experimental [3,4] and numerical [5–7]), and
indeed dry granular material rheology (see, for example, [8]
and [9]), have focused exclusively on shear flows. This short-
coming is understandable in part due to the relative difficulty of
achieving purely extensional flows experimentally. Extensional
deformations are, however, more severe than shearing in the
sense that material elements move apart exponentially, rather
than linearly, with time (or strain) [10], so in practical applica-
tions they may well prove to dominate the overall rheological
phenomenology. The relative importance of extensional to
shear rheological properties is traditionally quantified using
Trouton’s ratio, the ratio of extensional to shear viscosity.

Extensional rheology is better understood in polymers,
with many successful experimental approaches having been
developed over the past four decades. Classical techniques
include melt stretching [11], filament stretching [12,13], flows
through a contraction [14–19], and lubricated squeezing

[20,21]. Led by experimental insights from such techniques,
constitutive models for polymer rheology have long benefitted
from understanding both shear and extensional flows [22,23].
For the continued progression of the field of suspension rheol-
ogy, it is essential that the understanding of arbitrary deforma-
tions can be brought up to speed with that of polymers.

In recent years, there have been a number of experimental
studies of the extensional rheology of dense suspensions using
similar techniques to those above. There has been notable
emphasis on shear thickening systems, a particular class of sus-
pension that sits close to the colloidal-granular interface [4]. A
popular route has been to use a filament stretching device to
probe the high deformation rate uniaxial extension regime. In
such experiments, Rothstein and coworkers observed strain
hardening in nano- and micrometer particle suspensions, with
light scattering results suggesting particle self-organization as
the origin [24,25]. The approach is robust enough to detect
changes in particle concentration and solvent properties [26]
and to examine properties relevant to printing and other appli-
cations [27,28]. Devices of this type have the added complex-
ity of a liquid-air interface, the shape of which distorts under
rapid extensional flows, leading naturally to a connection
between strain hardening and granule formation [29]. Another
series of experiments placed a tensile load on a cornstarch sus-
pension [30], leading to the unexpected result that shear jam-
ming and shear thickening, both purportedly manifestations of
stress-induced particle friction [31], can be independently
inhibited using chemical modifiers [32].

A simulation model predicting shear thickening under
extensional flow has emerged recently [33], and found a
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Trouton’s ratio of 4 for planar extension (both above and
below shear thickening), surprisingly consistent with the pre-
diction for a Newtonian fluid. The analysis focussed on the
effect of polydispersity on shear thickening at a small number
of volume fractions. It is has not yet been explored whether
there is solids volume fraction dependence or deformation-
type dependence beyond planar extension. Experimental mea-
surements of Trouton’s ratio have been reported for suspen-
sions and found to be Oð10Þ in the Brownian regime [34] and
slightly above the expected Newtonian values in the granular
regime [35]. Furthermore, particle roughness was found to
enhance the extensional viscosity, demonstrating the impor-
tance of including particle-particle friction in numerical mod-
els and constitutive descriptions of extensional flow.

The focus on shear thickening is understandable given its
ubiquity in applications, but it has led to an overlooking of
the underlying rheological behavior of granular (by which
we mean athermal) suspensions under extensional flow. This
underlying behavior is typically described under shear flow by
the much-used viscous number model, the so-called lðIvÞ-rhe-
ology [3]. It is a robust framework for rheological modelling
of granular particles of arbitrary particle-particle friction, and
takes as its basis the assumption that for sufficiently hard
spheres the only relevant stress scale is the hydrodynamic one.
This leads naturally to apparent Newtonian rheology in which
all stresses scale linearly with shear rates, but remain highly
sensitive to the solid volume fraction /. The presence of a par-
ticle pressure under shear flow [3], complicated by an ambigu-
ity in measured values of reported normal stress differences
[36,37], however, leads crucially to the denomination “quasi”-
Newtonian for any dense granular suspension described by
lðIvÞ-rheology. Consequently, it is not clear whether this
framework can be generalized to extensional flows, and in par-
ticular, whether ratios of normal to shear stresses (expressed
through Trouton’s ratio) should be truly Newtonian in such
circumstances, in spite of the direct proportionality between
stresses r and shear rates _c. In this respect, extensional flows
are an important class of rheometric flow for studying suspen-
sions close to jamming.

In this article, we use numerical simulations to study dense
granular suspensions under extensional flow. We implement
a minimal discrete element-type numerical model that keeps
track of the trajectories and forces on overdamped, neutrally
buoyant suspended spheres, which are updated in a determin-
istic way according to Newtonian dynamics. The force terms
comprise hydrodynamic lubrication and harmonic contact
potentials with friction. The model operates in the athermal,
noninertial regime. We consider planar, uniaxial and biaxial
deformations and compute the Trouton’s ratios as a function
of the solid volume fraction, using shear flow as a reference.
The distinction identified recently between sliding and rolling
contacts for suspended particles [38,39] and, by extension,
the role of frictional forces in suspensions of large particles,
ought still to be valid for extensional flows, so it is essential
to consider explicitly the role of static friction between
particles. For this reason, our model allows hydrodynamic
lubrication forces to break down on some surface roughness
lengthscale, and we thereafter consider direct particle-particle
contacts with static friction coefficient l.

We first describe our numerical simulation methodology
(Sec. II), before describing the deformation types studied and
the method of imposing them (Sec. III). We then describe the
response of the material during the straining period (Sec. IV),
and go on to demonstrate the divergence of the shear and
extensional viscosities with volume fraction (Sec. V). We find
a discrepancy in the critical volume fractions for suspensions
of frictional particles that can be explained by considering the
microstructural configurations at jamming (Sec. VI). Finally,
we discuss to what extent the results for extensional flow can
be mapped onto viscous number rheology (Sec. VII).

II. NUMERICAL MODEL

Our model considers athermal, noninertial, neutrally
bouyant particles that represent a suspension corresponding
to that used in the seminal experiment of Boyer et al. [3].
We consider a periodic domain containing bidisperse spheres
with solids volume fraction /. The particles have density q
and radii a and 1.4 a, mixed in equal numbers. The simula-
tion box is initialized with 12 000 (shear) or 15 000 (exten-
sion) particles (we explore the importance of system size in
the Appendix) placed randomly before being relaxed to
achieve minimally overlapping states. In what follows, we
report ensemble averages over five realizations obtained by
changing the initial configurations using a random seed. The
simulation box is deformed according to a velocity gradient
tensor U1. Suspended particles are thus subjected to a rate
of strain tensor with symmetric and antisymmetric parts E1

and X1, respectively, where the background fluid flow at x
follows U1ðxÞ ¼ E1xþX1 % x.

A. Hydrodynamic forces

Hydrodynamic interactions between particles are based
upon the resistance matrix formalism described in [40–42].
Following Ball and Melrose [43], we consider short-ranged,
frame-invariant, pairwise interactions. For neighboring par-
ticles 1 and 2, translating with velocities U1, U2 and rotat-
ing at X1, X2, and with center-center vector r (and n
¼ r=jrj) pointing from particle 2 to particle 1, it can be
shown [44] that the force Fh and torque Ch on particle 1 are
given by

Fh=gf ¼ ðXA
11n& nþ YA

11ðI ' n& nÞÞðU2 ' U1Þ
þYB

11ðX1 % nÞ þ YB
21ðX2 % nÞ; (1a)

Ch=gf ¼ YB
11ðU2 ' U1Þ % n

'ðI ' n& nÞðYC
11X1 þ YC

12X2Þ; (1b)

where gf is the Newtonian viscosity of the suspending liquid.
For particle radii a1 and a2, the surface-surface separation
is given by h ¼ jrj' ða1 þ a2Þ, which we nondimensionalise
as n ¼ 2h=ða1 þ a2Þ. The scalar resistances XA

11; YA
11; YB

11;
YB

21; YC
11 and YC

12 comprise short range contributions that
diverge as 1=n and lnð1=nÞ and are given in Appendix A.
We neglect interactions that have h > 0:05a (with a the
smaller particle radius). The per-force hydrodynamic stresslet
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is Sh
ij ¼ ' 1

2 Fh
i rj þ Fh

j ri

! "
. A drag force and torque act on

particle 1 at position x1, given by

Fd ¼ '6pgf a1ðU1 ' U1ðx1ÞÞ; (2a)

Cd ¼ '8pgf a
3
1ðX1 'X1ðx1ÞÞ; (2b)

leading to per-particle contributions to the stresslet given by
Sd ¼ 'ð20p=3Þgf a

3
1E1.

B. Contact forces

Following experimental evidence that lubrication layers
break down in suspensions under large stress [38], and, equiva-
lently, for large particles [4], we use a minimum h defined as
hmin ¼ 0:001a, below which hydrodynamic forces are regular-
ized and particles may come into mechanical contact. For
a particle pair with contact overlap d ¼ ðða1 þ a2Þ ' jrjÞH
ðða1 þ a2Þ ' jrjÞ and center-center unit vector n, we compute
the contact force and torque on particle 1 according to [45]

Fc ¼ kndn' ktu; (3a)

Cc ¼ a1ktðn% uÞ; (3b)

where u represents the incremental tangential displacement,
reset at the initiation of each contact. kn and kt are stiffnesses,
with kt ¼ ð2=7Þkn. The tangential force component is restricted
by a Coulomb friction coefficient l such that jktuj ( lknd. For
larger values of jktuj, contacts enter a sliding regime. We take
the stresslet as Sc

ij ¼ 'Fc
i rj.

Trajectories are computed from the above forces. Contact
and hydrodynamic forces and torques are summed on each
particle and the trajectory is updated according to a Velocity-
Verlet algorithm. The dynamics are controlled by three dimen-
sionless quantities: The volume fraction /, the Stokes number

St, and the stiffness-scaled shear rate _̂c . We ensure that the

Stokes number St ¼ q _ca2=gf remains ) 1 throughout to

approximate overdamped conditions. We found Oð10'3Þ to
be sufficiently small in practice and achieved this by setting

particle radius a¼ 0.5 [length], density q¼ 1 [mass=length3],
suspending fluid viscosity gf ¼ 0:1 [mass=ðtime% lengthÞ]
and shear rate _c ¼ 0:001 ½1=time+. In this limit, we expect
rate-independent rheology in which all stresses scale linearly
with deformation rates. The extent to which the particles may
be considered hard spheres is set by the shear rate rescaled

with particle stiffness, as given by _̂c ¼ 2 _ca=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn=ð2qaÞ

p
[8].

We set _̂c < 10'5 throughout by setting kn¼ 50 000 [mass/
time2]. The model is implemented in LAMMPS [46]. The
overall stress tensor is computed by summing over all of

the stresslets r¼'2gf E
1þð1=VÞ

P
i S

dþ
P

ph
Shþ

P
pc

Sc
! "

where the sums are over individual particles i, hydrodynami-
cally interacting pairs ph, and contacting pairs pc.

III. DESCRIPTION OF APPLIED DEFORMATIONS

We consider shear, planar, uniaxial, and biaxial flows as
illustrated schematically in Figs. 1(a)–1(d), respectively.

Consider the general velocity gradient tensor U1 in three
dimensions which has components @vi=@xj. From this, we
obtain the components of the symmetric rate of deformation
tensor as E1ij ¼ 1=2ðð@vi=@xjÞ þ ð@vj=@xiÞÞ: Shear flows
have a corresponding rotational part X1ij ¼ 1=2ðð@vi=@xjÞ
'ð@vj=@xiÞÞ, while extensional flows are irrotational. For the
case of a Newtonian fluid, the stress tensor is then given sim-
ply by rij ¼ 'pdij þ 2g†E1ij where g† is the Newtonian vis-
cosity. In Table I, we present the rate of deformation tensors
E1 corresponding to each of the flow types explored in this
work, as well as the magnitudes jE1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1 : E1
p

and
the associated viscosity definitions, which follow [2]. It is
noted that the framework of Jones et al. [47] dictates that for
the uniaxial Trouton’s ratio we should compare the shear
viscosity at _c with the uniaxial extensional viscosity at

ffiffiffi
3
p

_c.
Comparing the reported deformation rate magnitudes in
Table I, we see that this requirement is satisfied. We take the
Trouton’s ratios (Tr) as the ratios of each of the extensional
viscosities to the shear viscosity. These lead to values of the
Newtonian Trouton’s ratio of 4, 3, and 6 for planar, uniaxial,
and biaxial flows, respectively. We will use these values as a
basis for comparison for the extensional flows modelled in
this work.

Volume-conserving deformations are applied to the simu-
lated suspension by incrementally changing the dimensions of
the periodic box according to the relevant rate of deformation
tensor. To simulate simple shear, we use a triclinic periodic
box with a tilt length Lxy [see Fig. 1(a)] that is incrementally
increased linearly in time as LxyðtÞ ¼ Lxyðt0Þ þ Ly _ct, giving a
deformation that is entirely equivalent to that obtained
using a Lees-Edwards boundary condition. For extensional
flows, the leading box dimension is increased with time
according to LðtÞ ¼ Lðt0Þe _ct to give a constant true strain
rate, that we quantify as _c. The other box dimensions are
varied accordingly to conserve the volume. We verified that
neglecting particle-particle interactions and imposing sim-
ply the deformation protocol described here and the Stokes
drag forces described above leads to particle trajectories
that follow precisely the affine deformation of the simula-
tion box. The velocity of any particle that crosses a periodic
boundary is remapped according to the velocity gradient
across the box perpendicular to that boundary. The velocity
gradient at any point in the simulation box at any time rep-
resents the overall applied box deformation and thus the
particles are subjected to uniform velocity gradients as
illustrated in Figs. 1(e)–1(g).

Whereas the shear deformation can be continually
remapped to permit arbitrarily large deformations, the exten-
sional deformations are constrained in magnitude since our
simulation approach involves “shrinking” one of the box
dimensions with time. Taking the uniaxial deformation as
an illustrative example, we initiate the simulation box with
15 000 particles of radii a and 1:4a and with a cuboidal box
of dimensions 171:4a% 171:4a% 10a (giving / ¼ 0:4 in
this case). During the period for which we observe strain-
independence of the viscosity (see below), the box dimen-
sions remain Oð10Þa in x, y, and z. There is uniform straining
throughout the sample during this period, with steady state
locally acting velocity gradients that match the overall
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box deformation (see Fig. 1, and a video showing a typical
deformation at https://doi.org/10.17863/CAM.13415). We ver-
ified that there is no system size dependence by simulating a
smaller sample and achieving a comparable (though shorter)

steady-state period. Our numerical model breaks down at large
extensional strains as the contracting dimensions of the simu-
lation box reach Oð1Þ particle radii and particles “see” them-
selves through periodic images (see the Appendix).
Notwithstanding the difficulty in achieving large deforma-
tions, the approach we describe here to achieve steady velocity
gradients during various extensional deformations has been
discussed and applied previously in several works across
glassy and polymeric systems (see, for example, [48–54]). To
reach larger strains, it is necessary to implement remappings
such as those described by Kraynik and Reinelt [33,55,56] for
planar deformations. For materials involving long time/length
scales (polymer melts for instance), these boundaries are
essential. For dense suspensions, one the other hand, that can
reach a steady state within strains of 1 or 2 [57], they may be
useful for some studies but are not crucial to study steady phe-
nomena. The planar deformation used in this work is equiva-
lent to that acting between remappings of the Kraynik-Reinelt
scheme.

IV. EVOLUTION OF SUSPENSION VISCOSITY
WITH STRAIN

Starting from a quiescent state with minimal particle-
particle contacts, we begin the constant-rate deformation. The
viscosity for each case is computed from the simulation data
according to the definitions in Table I. For example, the

FIG. 1. Schematics of the deformations applied in this work. Shown are (a) simple shear; (b) planar extension; (c) uniaxial extension; (d) biaxial extension. In
each case, the wireframe box illustrates the box dimensions at an earlier time and the red arrows indicate the directions of the applied deformation. The upper
coordinate diagram refers to (a) while the lower one refers to (c) and (d). The box deformations lead to uniform velocity gradients. Shown in (e)–(g) are exam-
ples of the velocity gradients obtained during uniaxial extension at increasing strain increments. (h) Plot of viscosity as a function of strain for each flow type
(at / ¼ 0:45 and friction l¼ 1) showing start-up period (shaded) and the steady flow period (unshaded). Black arrow indicates region from which viscosities
are used for averaging. (i) Plot of Trouton’s ratio as a function of strain for each flow type. Dashed lines represent the corresponding Newtonian values. In
each case, the gray shaded area represents the maximum and minimum values obtained during five independent simulation runs. Colored bars next to figure
labels (a)–(d) correspond to the colors in (h) and (i) (Color online).

TABLE I. Rate of deformation tensors E1, their magnitudes, and the vis-

cosity definitions for each type of flow explored in this work.

Rate of deformation

E1
Magnitude

jE1j Viscosity

Simple shear
0

1

2
_c 0

1

2
_c 0 0

0 0 0

0

BBBBB@

1

CCCCCA

_c r12= _c ¼ g†

Planar extension '_c 0 0

0 _c 0

0 0 0

0

BB@

1

CCA

2 _c ðr22 ' r11Þ= _c ¼ 4g†

Uniaxial extension
' 1

2
_c 0 0

0 ' 1

2
_c 0

0 0 _c

0

BBBBB@

1

CCCCCA

ffiffiffi
3
p

_c ðr33 ' r11Þ= _c ¼ 3g†

Biaxial extension _c 0 0

0 _c 0

0 0 '2 _c

0

BB@

1

CCA

2
ffiffiffi
3
p

_c ðr11 ' r33Þ= _c ¼ 6g†
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suspension viscosity under uniaxial extension is given by g ¼
ðrzz ' rxxÞ= _c. This result is further rescaled by the suspending
fluid viscosity gf and we thus present reduced viscosities as
g=gf . Viscosity versus strain plots for each deformation type
are given in Fig. 1(h), at volume fraction / ¼ 0:45 and friction
coefficient l¼ 1. For small strains _ct < 1 we identify start-up
regimes in which the viscosity increases with strain. During
this time, the number of direct particle-particle contacts
increases with strain and a flow-induced microstructure estab-
lishes [57,58]. As can be seen, we are able to achieve a strain-
independent region with a strain magnitude _ct ¼ Oð1Þ. It is
noted that the biaxial extension simulation is conducted using
the output from the uniaxial extension as the initial condition.
Thus the initial period presented for biaxial flow corresponds
to a flow reversal rather than to a start-up from a quiescent
state. Interestingly, a familiar characteristic surge in stresses
[57] (hydrodynamic in origin) is observed at very small strains,
indicative of placing closed particle contacts under tension as
discussed in [59,60].

In Fig. 1(i), we give the evolution of Trouton’s ratio with
strain, evaluated by rescaling the extensional viscosities by
the shear viscosity at each strain increment. There are two
interesting features to note. The most striking is that, for
_ct > 1, the results are remarkably close to the Newtonian val-
ues. This suggests that the quasi-Newtonian character of
overdamped suspensions extends beyond the linear scaling of
shear stresses with shear rates. The result for planar extension
matches that predicted by an independent simulation model
[33]. The second interesting feature is the surge in Trouton’s
ratio for each of the extensional flows, with a maximum at
around _ct ¼ 0:5. This indicates a faster microstructural evolu-
tion for extensional flows compared to shear flows. Such a
finding is consistent with the form of the applied deforma-
tions, which see fluid elements move together/apart exponen-
tially for extensional flows but linearly for shear flows. The
shaded regions in Fig. 1(i) represent the maximal and mini-
mal values obtained over five independent simulation runs,
indicating a very weak dependence on the initial configura-
tion. Error bars are thus omitted from the following results
and discussion.

V. EVOLUTION OF THE VISCOSITY AND
TROUTON’S RATIO WITH VOLUME FRACTION

Presented in Fig. 2 is the evolution of viscosity for fric-
tionless (a) and frictional (b) particles and the evolution of
Trouton’s ratio Tr for frictionless (c) and frictional (d) par-
ticles, with volume fraction / for each deformation type. In
general, the viscosities for all flow types follow the form
g=gf ¼ að1' /=/cÞ

'b, with /c a generic “critical” volume
fraction and b a scaling parameter much discussed in the lit-
erature [61] and reported to be ,2 in shear flow experiments
(see, for example, [4]). Following conventional nomenclature
[31], we drop /c and label the frictionless and frictional jam-
ming points /0 and /m, respectively, where /m depends on
l. We fitted such a form to our biaxial extension data and
found a ¼ 1:25; b ¼ 1:6, and /0 ¼ 0:644 for frictionless and
a ¼ 1:1, b¼ 2, and /m ¼ 0:575 for frictional particles. Also

shown in (a) and (b) are the hydrodynamic and contact contri-
butions to the shear viscosity which, when summed and com-
plemented by the Stokes term 2gf E

1 lead to the total shear
viscosity. We find that for frictional particles, contacts domi-
nate even for / < 0:4, while for frictionless particles contacts
only become dominant at / > 0:54. Comparable behavior of
the contact and hydrodynamic viscosities is obtained for all
of the flow types.

For / > ð/0;/mÞ, the suspension enters a jammed state as
indicated by the shaded red region in Figs. 2(a)–2(d). Here,
flow is only possible through particle deformations and thus
for strictly hard spheres, jamming represents flow arrest. For
the nearly hard spheres considered in this work, we enter a
high stress flowing regime in which an elasticity emerges cor-
responding to the stiffness of the particle-particle repulsion.
Such a region can only be observed experimentally when the
particles are sufficiently soft, for example, in emulsions [62].
In any case, the flow in this region is not strictly viscous and
thus is not expected to obey Newtonian Trouton’s ratios.

The values of Tr presented in Figs. 2(c) and 2(d) demon-
strate a remarkably broad range of volume fractions for which
the flow appears to be approximately Newtonian, persisting
up to / , 0:62 for frictionless and / , 0:54 for frictional
particles. Tr reaches between 7 and 8 under biaxial extension,
but given the large scale over which the overall stresses are
varying, we consider a discrepancy of ,25% from the
Newtonian value to be insubstantial. Interestingly, our simu-
lation result implies that there is very weak dependence of
Trouton’s ratio on particle-particle friction for / < 0:54,
despite the importance of the contact stress contribution and
the dominant role of friction in setting the viscosity at these
volume fractions.

An interesting disparity between frictionless and frictional
particles emerges in the “approaching jamming” region, for
volume fractions 0:54 < / < 0:65. In the frictionless scenario,
a narrow transition window of D/ , 0:02 exists in which
Tr rapidly and monotonically switches from its low (/ < /0)
plateau to a high (/ > /0) plateau. The monotonicity suggests
that each of the flowing states approach a common, deforma-
tion-type-independent, value of /0. The width of this
approaching jamming region decreases with increasing particle
stiffness as the transition to jamming becomes sharper (see the
Appendix). In contrast, Tr for frictional particles begins to
exceed its Newtonian values around D/ , 0:05 below jam-
ming /m. This suggests there is a window in which the exten-
sional viscosity of suspended frictional particles exceeds the
shear viscosity by up to an order of magnitude. In fact, we find
(see the Appendix) that this spike in the Trouton’s ratio for
frictional particles scales with the stiffness of the particles,
strongly suggesting that at volume fractions in this region, Tr
actually represents a ratio between jammed and flowing states
(rather than two stiffness-independent flowing states as is the
case for frictionless particles, which show no such scaling)
thus implying a discrepancy in /m for different flow types.
Returning to the viscosity divergence plotted in Fig. 2(b), inset,
we verify that the surge in Tr corresponds to a mismatch in the
frictional jamming volume fraction /m for different flow types,
as highlighted by the red circle that indicates the entry to jam-
ming for shear flow is shifted to the right with respect to
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extensional flows. The extensional viscosities tend to diverge
at a common volume fraction that is approximately 0.005
below that for shear flow. Based on this monotonicity and non-
monotonicity in Tr for frictionless and frictional particles,
respectively, we thus conclude that /m depends subtly upon
the deformation type whereas /0 does not. {Though there
appears to be a visual mismatch between /0 values for differ-
ent deformation types in Fig. 2(a), the monotonicity of Tr [Fig.
2(c)] proves that the shift is only in the y'axis and not in x.}

It is also noted that there is weak / dependence of Tr
above /0 (/m) for frictionless (frictional) particles. If we
crudely take the rheology here to be quasistatic [8], and thus
dependent on the “shape” of the deformation tensor but not
the relative magnitude of the deformation rate, we can obtain
a reasonable prediction of Tr above jamming. Specifically,
for planar, uniaxial, and biaxial flows we obtain, respec-
tively, Tr- 4=2; - 3=

ffiffiffi
3
p

, and -6=ð2
ffiffiffi
3
p
Þ above jamming,

regardless of particle-particle friction, corresponding to the
representative viscosities rescaled by the magnitude of E1

(see Table I).
The deformation type dependence of /m suggests a clear

route to intermittent jamming through changes in deformation
type. For example, at a volume fraction of / , 0:575, a

suspension of frictional particles is quasi-Newtonian under
shear flow, but jammed under extensional flow. This poses a
direct challenge to industrial processes that involve mixed
flow, suggesting that a fluid element at fixed volume fraction
might transiently jam and unjam dependent upon the instanta-
neous flow type to which it is subjected. Such an effect is not
predicted for frictionless particles.

VI. MICROSTRUCTURAL BEHAVIOR CLOSE TO
JAMMING

We observed a deformation-type-independent critical vol-
ume fraction /0 for frictionless particles, but a deformation-
type-dependent /m for frictional particles. This is consistent
with earlier observations that frictional jamming, which occurs
at /m, shows protocol dependence and hysteresis. Flow arrest
in frictional particles is thus often described as a fragile or
shear-jamming transition that masks an underlying true jam-
ming transition which occurs at /0 (with /0 > /m) [64].

When frictional forces are large, percolating chains of sta-
ble but fragile particle-particle contacts can permit jamming
with considerable anisotropy at volume fractions below /0

FIG. 2. Top: Divergence of the relative viscosity g=gf as a function of volume fraction / for shear, planar, uniaxial and biaxial flow with frictionless (a) and
frictional (b) particles. Also shown are the relative hydrodynamic and contact contributions to the shear viscosity. Qualitatively equivalent results are obtained
for the extensional flows (not shown). Highlighted in the red shaded region in (a) and (b) are the “jammed” regions where the rheology is no longer expected
to be viscous and thus a Newtonian Trouton’s ratio is not expected. Insets (a) and (b): Same data as (a) and (b) but focussing on the region near jamming where
there is a discrepancy in jamming volume fraction. Plotted on the y-axes are the viscosities rescaled by their values at jamming (as measured under biaxial
extension). Highlighted in Inset (b) in the red circle is the anomalous point for shear flow, which enters the jammed region at higher volume fractions than
extensional flows. Bottom: Evolution of Trouton’s ratio with volume fraction / for planar, uniaxial, and biaxial flow with frictionless (c) and frictional (d) par-
ticles. Highlighted are regions where the ratio matches that of a Newtonian fluid (blue), where it deviates on the approach to jamming (green), and where it is
fully jammed (red) (Color online).
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(see, for example, [64–66]). In such systems, experiments
show hysteretic effects whereby the material initially jams at
some low packing fraction (similar to our /m here) but upon
further perturbations it consolidates and approaches /0 [67].
No such hysteresis is observed at frictionless jamming [68],
which thus occurs when the material reaches an isotropic (or,
at least, more isotropic, see [69]) packed state. Our suspen-
sion of frictionless particles might thus reach jamming at an
isotropic configuration that is not protocol (i.e., deformation
type) dependent, whereas the frictional particles reach jam-
ming when their dynamically evolving force chains are able
to percolate the system and permit an anisotropic jammed
state, which is necessarily protocol dependent.

To test whether this description is suitable for explaining
our observed divergence of Tr for frictional (but not friction-
less) particles, we consider the microstructural anisotropy at
the critical volume fraction. To do this, we consult a familiar
form of fabric tensor defined as Aij ¼ hninji' ð1=3Þdij [70],
where ni is a particle-particle unit vector and angular brackets
represent an average over all particles that are in mechanical
contact (defined when jrj < ða1 þ a2Þ). For a large, isotropic
sample, one obtains Aij ! 0. We use scalar representations of
the fabric, A, corresponding to the viscosity definitions given
in Table I, for shear A :¼ Axy, planar A :¼ Ayy ' Axx, uniaxial
A :¼ Azz ' Axx and biaxial A :¼ Axx ' Azz deformations.

Fabric data are presented for frictionless and frictional par-
ticles in Figs. 3(a) and 3(b), respectively. In all cases, negative

A corresponds to a preferential orientation of contacts along
the compressive flow axis, which we illustrate schematically
in Figs. 3(c) and 3(d) for shear and planar extension deforma-
tions, respectively. In Figs. 3(e) and 3(f), we plot the distribu-
tion of the vector ni projected onto the xy-plane for shear and
planar flow. There is always an alignment of contacts along
the compressive axes, regardless of /, friction and deforma-
tion type. We find that A! 0 as / increases, indicating that
the microstructure generally becomes more isotropic as jam-
ming is approached. Crucially, it is observed that there is a
strong disparity in the values of A measured at the jamming
point when comparing frictionless and frictional particles.
Frictionless particles jam when A is closer to 0 [indicative
examples are A ¼ '0:028 for shear and A ¼ '0:029 for
planar deformations at /0, indicated in Fig. 3(a)] indicating
that flow-arrest is achieved with a more isotropic microstruc-
ture than in frictional flows, which have A ¼ '0:063 and
A ¼ '0:113, respectively, at their respective /m [Fig. 3(b)].
This finding is also apparent in the radial distributions shown
in Figs. 3(e) and 3(f). These show a more anisotropic distribu-
tion of contact forces at the jamming volume fraction for fric-
tional compared to frictionless particles, with a surplus of
particle contacts along the NW-SE axis under shear flow and
the E-W axis under planar flow. In contrast, the profiles for
frictionless particles are, while not perfectly circular, rather
more uniform. Moreover, there is little deformation type
dependence in the value of A at /0 for frictionless particles,

FIG. 3. Behavior of the microstructural fabric close to the critical volume fraction for each deformation type explored in this work. Shown are the scalar fabric
A for (a) frictionless particles and (b) frictional particles. Dashed arrows show exemplary values of A at jamming. In (c) and (d), we draw schematic illustra-
tions of microstructural fabric for shear flow and planar extension, respectively. Dark shading corresponds to load-bearing contacts while light shading corre-
sponds to “spectator” particles [63]. Straight blue arrows indicate compressive axes; curved blue arrows indicate rotational component; gray arrows indicate
streamlines corresponding to affine flow. Shown in (e) and (f) are radial distributions of particle-particle contacts (defined when jrj < ða1 þ a2Þ) at the critical
volume fraction, projected onto xy for shear and planar flows. The shape of the distribution reflects the values of A (dashed black lines show the result when
our algorithm is run using 5% 105 random points distributed uniformly over a spherical surface). Suspensions of frictionless particles jam with A less than half
the frictional value, and thus the distribution is more circular.
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suggesting that, although the definitions of A vary with each
case, jamming occurs with a similarly isotropic structure in
each case. In contrast, there is quite some variation in A at /m

for frictional particles, again emphasizing the dependence
upon deformation type.

Frictionless particles only jam when their arrangement is
nearly isotropic, so it does not matter what type of deforma-
tion we apply; frictional particles can jam in an anisotropic
state, so it matters how we deform them up to this point. We
thus conclude that frictionless particles have constant Tr all
the way to /0 because different deformation types share this
critical volume fraction; frictional particles have a deforma-
tion type dependent /m which is highest for shear flows,
meaning Tr diverges between, e.g., /uniaxial

m and /shear
m .

VII. MAPPING THE EXTENSIONAL
DEFORMATIONS ONTO VISCOUS NUMBER
RHEOLOGY

We finally verify that the numerical model described
herein predicts flow behavior under shear and extension that
qualitatively follows the viscous number rheology framework
proposed by Boyer et al. [3] very well. The viscous number is
defined as Iv ¼ gf _c=P (for suspending fluid viscosity gf,
deformation rate _c and pressure P) and works as an analogue
of the inertial number used in dry granular material modelling
[9]. In the athermal, noninertial limit, the rheological state of
a suspension can be uniquely defined using two functions that

relate the volume fraction / and the stress ratio s ¼ r=P to
the viscous number Iv. The stress ratio, which is ordinarily
taken as the ratio between the shear stress and mean normal
stress (i.e., the pressure P), is defined in this work according
to the viscosity definitions given in Table I. Specifically,
we replace the shear stress with a generic stress r given by
r :¼ rxy for shear, r :¼ ryy ' rxx for planar, r :¼ rzz ' rxx

for uniaxial and r :¼ rxx ' rzz for biaxial deformations. For
each flow type, the pressure is taken simply as P ¼ '1=3P

i¼x;y;z rii. The functions /ðIvÞ and sðIvÞ are presented in
Fig. 4. Crucially, qualitatively consistent behavior is observed
for both shear and extensional flows and for both frictionless
and frictional particles. Comparing frictionless and frictional
cases quantitatively, we find discrepancies in the critical /, as
discussed above, as well as discrepancies in the limiting s at
low Iv, which has been discussed earlier by Da Cruz et al.
[71]. We also show in Figs. 4(b) and 4(d) the predictions
based on the model proposed by Boyer et al. [3], for which
they give parameters appropriate for frictional particles (we
use their parameters here). Sources of discrepancy between
the present result and the model prediction are variations in
polydispersity (which alter the numerical value of the critical
volume fraction / measured when Iv ! 0), variations in
particle-particle friction coefficient (which alter the numerical
value of the limiting stress ratio r=P measured as Iv ! 0) and
variations in particle hardness (which alter the critical viscous
number at which volume fractions may exceed the critical
volume fraction).

FIG. 4. Viscous number rheology for shear and extensional flows. Shown are the volume fraction as a function of viscous number for frictionless (a) and fric-
tional (b) particles, and the stress ratio as a function of viscous number for frictionless (c) and frictional (d) particles. We redefined the viscous number replac-
ing _c with jE1j and redefined the stress ratio by rescaling r with a Newtonian Trouton’s ratio for each flow type. We thus arrive at the collapsed plots of
volume fraction as a function of viscous number for frictionless [(a), inset] and frictional particles [(b), inset] and stress ratio as a function of viscous number
for frictionless [(c), inset] and frictional particles [(d), inset]. We provide fits to the Inset data according to the expressions given therein, with the parameters
given in the main text. Also shown in (b) and (d) are the predictions given by Boyer et al. [3] based on shear flow experiments.
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Considering /ðIvÞ in Figs. 4(a) and 4(b), we find some dis-
crepancy in the quantitative results for different flow types
below the critical volume fraction. Interestingly, we find that a
convincing collapse of the data in this region is obtained if we
redefine Iv based on the magnitude of the deformation rate ten-
sor, that is replacing _c with jE1j to give I0v ¼ gf jE1j=P, Figs.
4(a) and 4(b) (Inset). This result implies that an alternative
Trouton’s ratio (Trp) may be defined for the mean normal
stresses, taking values that correspond approximately to jE1j
for each flow type. Comparing sðIvÞ in Figs. 4(c) and 4(d),
we similarly find a qualitative match for all flow types, but
a quantitative discrepancy. Since we have demonstrated satis-
factory correspondence to Newtonian Tr for a broad range
of /, as well as a convincing collapse of /ðIvÞ with jE1j
that implies an equivalent Trp, we crudely define a rescaled
stress ratio as s0 ¼ ðr=TrÞ=ðP=TrpÞ. Using s0 and I0v as defined
above, we again are able to collapse the data, Figs. 4(c)
and 4(d) (inset). The collapse is particularly convincing for fric-
tionless particles and still rather good for frictional particles.

This result demonstrates that, provided the stresses are
rescaled appropriately by their Trouton’s ratios (which we
have shown can be considered as Newtonian for a broad
range of /), the viscous number rheology framework pro-
posed by Boyer et al. [3] can predict the rheology for all of
the deformations considered in this work with a single set of
parameters. We provide examples of such a fitting for the
frictionless case [Figs. 4(a) and 4(c) (inset)], using /ðI0vÞ
¼ /0=ð1þ I01=2

v Þ and s0ðI0vÞ ¼ l1 þ ðl2 ' l1Þ=ð1þ I0=I0vÞ
þ I0v þ 2:5/0I01=2

v with /0 ¼ 0:644; l1 ¼ 0:1, and the param-
eters l2 ¼ 0:7 and I0 ¼ 0:005 following Boyer et al. [3].
Similarly for the frictional case [Figs. 4(b) and 4(d) (inset)],
with /ðI0vÞ ¼ /m=ð1þ I01=2

v Þ and s0ðI0vÞ ¼ l1 þ ðl2 ' l1Þ=
ð1þ I0=I0vÞ þ I0v þ 2:5/mI01=2

v with /m ¼ 0:575 and the
parameters l1 ¼ 0:32; l2 ¼ 0:7, and I0 ¼ 0:005 following
Boyer et al. [3]. Since the necessary stress rescalings derive
directly from the relationships between the rate of strain ten-
sors defined above, and according to Newtonian rheology (at
least for volume fractions up to slightly below jamming), we
can characterize the rheology of athermal, noninertial parti-
cle suspensions in any of the studied flows based on the rate-
independent formulation [3]. Interestingly, the log-linear
axes in Figs. 4(c) and 4(d) inset reveal a potential mismatch
in the functional form of s0 for frictionless and frictional par-
ticles on the approach to jamming. We expect that this does
not derive from the effects of polydispersity or particle hard-
ness mentioned above, but rather represents a qualitative dif-
ference in the nature of the stresses at flow arrest when
contacts are sliding or rolling. The asymptotic behavior of
s0ðI0vÞ for frictionless particles has been previously demon-
strated in the absence of hydrodynamic interactions [7], and
further analyses based on the current model are deferred to
future work.

VIII. CONCLUSION

We have thus shown that for a broad range of volume
fractions the underlying extensional rheology of dense sus-
pensions can be described simply by a Newtonian Trouton’s

ratio. This leads to a good agreement with viscous number
rheology, provided the stresses are rescaled appropriately by
the Trouton’s ratio, which is available a priori from the
known deformation tensor. For suspensions of frictionless
particles, our model predicts no flow-type dependence on the
critical volume fraction for jamming /0 and consequently
the Trouton’s ratios are fixed up to / , 0:63. This result is
relevant for athermal suspensions with normal repulsive
interactions between particles, for example, emulsions and
silica suspensions below shear thickening. In contrast, a dis-
parity in jamming volume fractions /m for different defor-
mations emerges for frictional particles, suggesting that
mixed flows with shear and extensional components might
jam and unjam at fixed volume fraction and stress, simply
due to changes in the deformation. This is relevant for sus-
pensions of large granular particles of the type described
under the framework of Boyer et al. [3], and also for silica
suspensions above the onset of shear thickening.

It would be interesting to determine whether, in practice,
chaotic flow or even oscillating flows of the type described
by Pine et al. [72] that can eliminate particle-particle contacts
might serve to inhibit the role of load-bearing force chains
and thus extend the range of volume fractions that exhibit
Newtonian Trouton’s ratios even for frictional particles.
Achieving a general description of extensional rheology is
relevant to the numerous applications that involve mixed
flows of dense suspensions, notably in footstuffs [73],
ceramic paste extrusion [1,74], and calcium phosphate injec-
tions for bone replacement treatments [75]. In addition, dense
suspensions are emerging as a useful material for energy dis-
sipation during impacts, for which both biaxial [76] and uni-
axial [77] configurations are relevant.
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APPENDIX A: SCALAR RESISTANCES FOR
HYDRODYNAMIC LUBRICATION FORCES

The scalar resistances used in the hydrodynamic force
model described in Sec. II follow those presented by Kim
and Karrila [42] and are given (for b ¼ a2=a1) by
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APPENDIX B: CHECK THAT THE SIMULATION
RESULT IS NOT AFFECTED BY FINITE-SIZE
EFFECTS

Using simple shear as a test case, we simulate various peri-
odic box sizes (i.e., particle numbers) to check that there are
no finite size effects, Fig. 5. For simulations with N> 3000,
we find rather convincing system size independence. Thus we
conclude that the results presented in this work, which all
have N> 10 000, are not influenced by system size.

APPENDIX C: DEMONSTRATION OF SIMULATION
BREAKING DOWN FOR LARGE UNIAXIAL STRAINS

As discussed in the main text, our extensional flow simula-
tions do not allow arbitrarily large deformations, but rather are
limited by the shrinking length of the compressive axes. We
tested the maximal strain that can be reasonably achieved under
uniaxial extension by deforming the box until the measured
viscosity shows unphysical behavior, Fig. 6. For both system
sizes considered, we are able to obtain a strain independent vis-
cosity in the strain window 1! 4:5. We thus constrain the
averaging window for all extensional flow simulations consid-
ered in this work to that range of strains.

APPENDIX D: ROLE OF PARTICLE STIFFNESS

To confirm that the spike in Trouton’s ratio observed for
frictional particles does indeed represent a ratio between a
flowing and a jammed state, we repeated the simulations

FIG. 5. Divergence of simple shear viscosity for frictional particles (l¼ 1)
with volume fraction for several different system sizes, measured in terms of
total particle number N.

FIG. 6. (a) Viscosity versus strain plot for uniaxial deformation with a small
(N¼ 7500) and large (N¼ 15 000) simulation box. (b) Variation of box
dimensions Lx and Lz with strain.

FIG. 7. (a) Trouton’s ratio versus volume fraction for uniaxial deformation
and frictionless particles with increasing particle stiffness kn, kt. (b)
Trouton’s ratio versus volume fraction for uniaxial deformation and fric-
tional particles with increasing particle stiffness kn, kt.
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using particles with increased stiffness. Since the stresses in
the flowing states are roughly independent of particle stiff-
ness (since we are already near the hard particle limit) while
the jammed state stresses scale with kn=a [8], we find that the
magnitude of the spike in Trouton’s ratio for frictional par-
ticles at / ¼ 0:575 scales with the particle stiffness, Fig. 7.
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