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ABSTRACT

Dense suspensions of non-Brownian hard spheres are often characterized as yield-stress fluids despite having no intrinsic time or force scales
that could lead to such rheology. One mechanism for the apparent yield stress is particle migration, which produces (or is caused by) inho-
mogeneous flow conditions and leads to local regions where the solids’ content approaches or exceeds the limit of flowability. In such a sce-
nario, one does not induce flow by exceeding a yield stress, but instead by exploring the only remaining control parameter, namely the flow
history. We demonstrate using particle-based simulation that this apparent local yield stress behavior does indeed emerge in a model dense
suspension of non-Brownian hard spheres and that it can be eliminated by imposing a time-varying flow field.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0226731

I. INTRODUCTION

Dense suspensions of micrometer-sized particles are common-
place in industry, where effective modeling for design and operation of
processes requires accurate and reliable material characterization.1,2 In
a model system of non-Brownian, non-inertial hard particles (relevant
to systems with particle radius a � 1–10lm) under steady homoge-
neous flow, the components of the stress tensor are linear in the shear
rate and are functions of the particle volume fraction / only.3,4 For the
shear viscosity, one can therefore write Rxy=g _c ¼ Fð/Þ, with g being
the viscosity of the suspending liquid, Rxy the shear stress, and _c the
shear rate. The function F is typically written in a general form as
jð/m � /Þ�k5,6 (k � 2), with the maximum packing fraction /m
being the key parameter needed to describe the rheology. Importantly,
this frictional jamming point can be exceeded in some circumstances,
since it is lower than the random close packing limit /rcp � 0:64.

Practitioners typically seek to characterize suspension rheology
under well-controlled conditions and use the extracted parameters to
make predictions for more complex engineering flow scenarios. In
practice, this involves measuring, e.g., Rxy vs _c or Rxy= _c vs Rxy under
conditions in which / is presumed to be spatially invariant.
Experiments with granular particles indeed found no yield stress below
the frictional jamming point for the density-matched case in which the

particle distribution remains spatially uniform.3,7 In cases where the
stress field predisposes the system to particle migration, however, this
approach can prove problematic. For a non-Brownian suspension in a
Couette flow, for instance, one often finds an inner sheared region and
an outer annulus that is non-flowing8,9 (or much slower flowing10,11)
and similarly a yield stress is reported in granular suspensions for
which gravity causes settling.7 This observation means that one could
characterize the bulk constitutive behavior of the material using a
model with a finite yield stress (see the discussion in Ref. 9) despite a
simple dimensional analysis (mentioned earlier, see Boyer et al.3) dem-
onstrating that this is not possible below /m. The non-flowing region
appears due to the spatially varying / that emerges as a result of nor-
mal stress gradients, so that the Herschel–Bulkley parameters obtained
from such a measurement do not describe a flow curve per se but
rather a series of points from a family of flow curves each with different
/. What is being measured is thus not a local flow rule12,13 or constitu-
tive behavior for a constant-/ material; consequently, the parameters
measured under one set of flow conditions will inevitably fail to predict
the flow behavior in others. More fundamentally, the non-flowing
region is not indicative of a yield stress in a homogeneous material but
rather of a spatial region in which the local / approaches or even
exceeds the jamming value /m.
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This subtle but important distinction has consequences for how
one might achieve unjamming in practical scenarios, which we address
here. In general, one achieves flow in a yield stress fluid by overcoming
that stress. In non-Brownian suspensions in which particle migration
is present, increasing the applied stress will fail to unjam the system
(unless the particles are deformable). This must instead be achieved by
changing the details of the flow protocol, a requirement deriving from
the fragility of such materials and the tendency for their viscosity to
decrease upon changes to flow direction.14–16 Understanding this dis-
tinction in governing physics is crucial to achieving flow in jammed
scenarios and has been explored in various contexts including
vibration-induced liquefaction17,18 and in more controlled superposed
orthogonal shear.19

Here, we explore this problem using a computational thought
experiment: a particle-based simulation modeling the Newtonian
dynamics of suspended hard spheres under various imposed inhomo-
geneous flow conditions, accounting for pairwise hydrodynamic lubri-
cation and frictional particle–particle contact forces.20 Our imposed
flow is a time-varying extension of that described by Saitoh and
Tighe21 (see also Refs. 22 and 23, although we address transient flows,
which these works do not) and sets up volume fraction profiles that
locally exceed /m, allowing us to demonstrate and then scrutinize the
apparent yield stress behavior, before exploring under what conditions
it can be eliminated.

II. NUMERICAL MODEL

We model a non-Brownian suspension of micrometer-sized
spheres under an imposed driving force that leads to a spatially and
temporally varying shear rate _cðy; tÞ. The particle properties that set
the length, mass, and time scales are the radius a (length), density q
(mass/length3) (equal to the fluid density), and stiffness kn (mass/
time2) (this has a tangential counterpart kt ¼ 0:7kn). Also relevant are
the fluid viscosity g (mass/(length � time)), the solid volume fraction
/ (dimensionless), and the interparticle friction coefficient l ¼ 0:5
(dimensionless). The timescales

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa3=kn

p
and qa2=g are set � 1= _c

so that the system meets the criteria for being rate-independent, and
we set ðqa2hmin=gÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa3=kn

p ¼ 0:1 so that contacts are fully over-
damped (hmin is defined herein). At a steady state and with spatially
uniform _c, the dimensionless shear stress Rxy=g _c is thus a function of
/ only.3

Particles are subject to Stokes drag, pairwise lubrication, and pair-
wise contact forces and torques.24 The drag on particle i (radius ai) is
set by its velocity ui and the specified fluid streaming velocity at its
center u1ðxiÞ: Fd

i ¼ �6pgaiðui � u1ðxiÞÞ: Similarly, a torque acts to
cause the particles to rotate with angular velocity set by 1

2 ðr� u1Þ.
Neighboring particles i and j with center-to-center vector ri;j experi-
ence lubrication forces25,26 dependent on the dimensionless gap h
between their surfaces and their relative velocity. The leading term
scales with 1=h and the normal component (along ri;j) of the pairwise
velocity difference: F l

i;j ¼ 3
2 paig

1
h ðuj � uiÞn: Lubrication forces

oppose relative motion between particles and are prevented from
diverging at contact by an imposed lower limit on h, hmin ¼ 10�3

(with results insensitive to this choice when 10�4 < hmin < 10�2). A
torque also acts to resist relative rotation between i and j, detailed else-
where.20 Contacting particles i and j experience repulsive forces depen-
dent on the scalar overlap d ¼ 2a� jri � rjj and the absolute

tangential displacement accumulated over the duration of the contact
n: Fc

i;j ¼ kndri;j=jri;jj � ktn. The friction coefficient l sets an upper
bound on n through jnj � lknd=kt . The a; b component of the stress
R due to lubrication and contact is found, respectively, by summing

ðFl;a
i;j r

b
i;j þ Fl;b

i;j r
a
i;jÞ=2 and Fc;a

i;j r
b
i;j over all pairs. The forces are summed

on each particle, and the trajectories are then updated with time step
chosen to be small compared to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa3=kn

p
and qa2=g.

III. STEADY STATE INHOMOGENEOUS FLOW

For inhomogeneous flow simulations, we set the periodic simula-
tion box size as Lx ¼ 60a and Lz ¼ 20a, with Ly ¼ 100a; 200a; 400a
[Fig. 1(a)] so that there is scale separation between the domain size in
the velocity gradient direction and the particle, and we initialize the
system with a spatially homogeneous volume fraction of �/ ¼ 0:59
(fractionally below the simple shear jamming point). Simulations com-
prise �40 000 particles with radii a and 1.4a mixed in equal numbers,
chosen to prevent crystallization while retaining rheology and jam-
ming points close to the idealized monodisperse limit.27

We drive flow by manipulating the per-particle Stokes drag term
described earlier, applying a streaming velocity u1 as

Fd
i ¼ �6pgai ui � a1 sin

2pyi
L

� �
dx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

u1

0
B@

1
CA: (1)

Here, yi is the y-coordinate of particle i, and dx is a unit vector pointing
along x. This u1 is sketched in Fig. 1(a). This force introduces a time-
scale L=2pa1, which compares against the viscous timescale to give a
dimensionless control parameter qð2pa1=LÞa2=g. Setting this quantity
Oð10�2Þ results in local Stokes numbers q _cðyÞa2=g � 10�2 so that
particle inertia can be neglected. In this range, shear rates and stresses
scale linearly with a1 (equivalent to the rate-independent result for
simple shear3). We focus first on the steady-state behavior, before
addressing the dynamics associated with startup and time-varying
driving.

Shown in Figs. 1(b)–1(e) are steady state profiles in y of the nor-
mal Ryy and shear Rxy stresses rescaled by a characteristic stress
gð2pa1=LÞ, the shear rate q_ca2=g, and the volume fraction /. We first
demonstrate that the rheology is in violation of a local flow
rule, having obtained the latter using simple shear simulations with
Fd
i ¼ �6pgaiðui � _Cyi=LdxÞ for constant _C and varying /. Figure

1(f) shows the homogeneous shear and normal stresses, with solid lines
showing fits to Ryy=g _c ¼ ~jð/m � /Þ�2 and Rxy=g _c ¼ jð/m � /Þ�2,
with /m ¼ 0.595, ~j ¼ 0:15, and j ¼ 0:09. Using the measured, spa-
tially uniform normal stresses from inhomogeneous flow [from
Fig. 1(b)] and the imposed u1 [gray line Fig. 1(d)], we predict the pro-

files in y of volume fraction /ðyÞ ¼ /m � ð~jgj _cðyÞj=RyyÞ1=2 and

shear stress RxyðyÞ ¼ jg _cð/m � /ðyÞÞ�2 [broad lines in Figs. 1(c)
and 1(e)]. Despite being bound by /m as the maximum allowed value
of / and having to conform to the imposed shear rate, the local
assumption makes reasonable predictions of /ðyÞ and RxyðyÞ in
regions where q _cðyÞa2=g is large, but around y=L ¼ 0:25 and 0.75, it
fails dramatically. In particular, the measured / is able to exceed signif-
icantly the homogeneous /m in large regions of the domain (although
it remains bounded by the close-packing limit /rcp � 0:64), confirm-
ing that the local flow rule measured under homogeneous conditions
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does not apply (measuring /m with greater precision would not
change this conclusion). These regions have very low shear rate and
are indicative of narrow plug-like regions. The spatial variation of /
emerges as a consequence of a transient gradient in the normal stress
Ryy during start up.

10 In the steady state, once the / profile has estab-
lished, Ryy is uniform across y [Fig. 1(b)].

Representative flow curves obtained under steady state sinusoidal
driving are shown parametrically in Figs. 1(g) and 1(h). Figure 1(g)
shows the “lðJÞ”-rheology under inhomogeneous flow (colors), com-
pared against simple shear (gray), where the latter corresponds well to
canonical experiments.3 Here, each colored point represents a binned
region in y of width � a, with each plotted point thus representing
a different volume fraction. Consistent with the y-profiles
[Figs. 1(b)–1(e)], inhomogeneous data violate the simple shear

rheology when the shear rate is low, with L ¼ 100a data reaching l ¼
0 and data for larger system sizes consistently decreasing with shear
rate over the range of accessible J. Figure 1(h) plots the local reduced
shear stress jRxyja=kn vs the local shear rate q _cðyÞa2=g, again with
each plotted point representing a specific y-coordinate and thus having
a different volume fraction. Each plotted point thus represents a single
point taken from one of a family of volume fraction-dependent homo-
geneous constitutive curves, with an example given in gray for the
global volume fraction of the system. For L ¼ 400a, the inhomoge-
neous data clearly tend toward an apparent yield stress as _c ! 0 (not-
ing that Rxy ¼ 0 precisely at the spatial position where _c ¼ 0),
whereas this effect is weakened as the gradient of the driving flow is
increased, suggesting that the importance of the apparent yield stress
and its behavior under dynamic flow described below becomes more

FIG. 1. Steady state inhomogeneous flow. (a) Snapshot of simulation. Dashed line indicates the magnitude of the streaming velocity applied to each particle according to its y
position, with small arrows and color scale indicating the flow direction. Shown in (b)–(e) are profiles in y of, respectively, the normal stress Ryy=gð2pa1=LÞ; the shear stress
Rxy=gð2pa1=LÞ; the dimensionless shear rate q _ca2=g; and the volume fraction / [with the black dashed line in (e) indicating the mean �/ ¼ 0:59 and the dotted line indicat-
ing /m ¼ 0:595, with L ¼ 400a (red), L ¼ 200a (green), L ¼ 100a (blue)]. Broad colored lines in (b), (c), and (e) represent predictions of the local constitutive model
described in the text, assuming the flow follows the imposed u1 [gray line in (d)]. (f) Local rheology measured with q _ca2=g ¼ 0:01, showing the shear (red) and normal
(green) stresses as functions of /. Solid lines are fits to the local model described in the text. In (g) and (h) are rheology data presented parametrically as lðyÞ vs JðyÞ and
jRxyðyÞja=kn vs qj _cðyÞja2g. Gray points and lines indicate homogeneous data; colored lines represent inhomogeneous data with different L (colors as above), with each point
representing a y position.
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important in larger geometries. [Indeed, most practical geometries in
which dense suspensions arise will have shear rate gradients spanning
lengthscales much larger than Oð100aÞ]. Importantly, the data in
Fig. 1(h) is not a true flow curve: each data point is measured at a dif-
ferent y position, for which the local / is varying according to
Fig. 1(e). Rather, we plot a series of points each taken from a separate
rate-independent flow curve. Nonetheless, what is important is that in
this representation the viscosity diverges as the shear rate is lowered
(equivalently Rxy ! constant as _c ! 0) and / > /m, superficially
representing yield stress behavior. This phenomenology occurs for
�/ ¼ 0:59, where under homogeneous conditions, the material flows
viscously (albeit with large viscosity).

IV. TRANSIENT FLOW

Following the reasoning that leads to rate-independence in steady
states for non-Brownian suspensions, one finds that the stress may
also depend on the flow history. This is well-supported by experimen-
tal data, notably the pioneering flow-reversal experiments of Gadala-
Maria and Acrivos,28 and later demonstrations that time-varying flow
can reduce the viscosity of shear thickening suspensions.19 From this,
we infer that time-varying flow fields can produce behavior that viola-
tes the steady state (homogeneous or inhomogeneous) rheology, a
result that is well-established in spatially uniform flows.19,29 A central
question to the latter works is how fast does the flow need to vary in
order to produce novelty.

In the absence of other time or force scales (thermal motion,
attractive or repulsive interactions), the only relevant timescale in our
model is the time taken to establish the inhomogeneous volume frac-
tion profile /ðyÞ shown in Fig. 1(e). Since we are operating under rate-
independent conditions (i.e., since q _ca2=g is small), it is more appro-
priate to consider the strain taken to establish the / profile, since (in
the linear regime) the time taken will scale inversely with the character-
istic timescale for driving flow in our model, L=2pa1.

To determine to rate at which our system advances toward spa-
tially inhomogeneous steady states, we consider startup flow during
the transient period from t ¼ 0 (when the particle distribution is uni-
form in space) up until the steady states in Fig. 1 are reached, Fig. 2.
Starting from a homogeneous particle distribution [/ 6¼ /ðyÞ] with
no shear [_cðyÞ ¼ 0], the system reaches an established /ðyÞ profile
once the elapsed time is such that ð2pa1=LÞt � 1, corresponding to a
strain of � 1 along the sheared regions. Over the same duration, one
observes the normal stress obtaining a spatially uniform value, indicat-
ing that beyond _ct ¼ 1 there is no driving force for further particle
migration.

In order to disrupt particle migration and mitigate against regions
with / > /m, one must introduce a driving flow that changes its posi-
tion more rapidly than the inhomogeneous volume fraction profile can
establish. Defining a characteristic velocity scale for the time-varying
driving as a2 (see below), we might expect such dynamic driving to
influence the steady state particle distribution when a2=a1’1. This
dimensionless ratio operates in some sense as a Peclet number, com-
paring the size of the fluctuations or perturbations to the system to the

FIG. 2. Time series of the initial transient after starting up from a spatially uniform
state. Horizontal axis represents the spatial position in y; vertical axis is increasing
time t; color bar gives the accumulated strain (a) and volume fraction, (b) and nor-
mal stress, and (c) profiles. (a) Accumulated strain profile j_cðyÞjt, showing a steady
increase in the strain along y=L ¼ 0, 0.5, 1 and no accumulated strain in the
regions at y=L ¼ 0:25, 0.75 where _c � 0. Solid black lines are contours at integer
values of _ct. (b) Development of volume fraction profile /ðyÞ with time. The time t
on the vertical axis is scaled with the characteristic time associated with driving,
L=2pa1. (c) Development of the uniform normal stress profile RyyðyÞ occurs within
the initial 0.5 strain units, consistent with the evolution of the / field. Here, Ryy is
rescaled by its spatially averaged value at each time step �Ryy .

FIG. 3. Response to driving with a spatially and temporally varying u1. (a)
Snapshot of the simulation showing the applied driving u1ðyÞ at time t in black and
at some later time t þ Dt in yellow, (b) volume fraction profiles /ðyÞ for varying
a2=a1 [see legend in (c)], (c) shear rate profiles q _ca2=g for varying a2=a1, (d)
phase shift in /, _c for varying a2=a1, and (e) apparent flow curves obtained by
parametric plots of jRxyðyÞja=kn vs qj _cðyÞja2gÞ for varying a2=a1, with gray line
indicating homogeneous result.
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translation driven by the mean flow. Works that applied vibrations to
granular packings in other settings similarly found that increasing the
magnitude of imposed noise (analogous but not identical to our mov-
ing flow field) resulted in liquefaction of the material.17,30

V. DYNAMIC INHOMOGENEOUS FLOW

To test this idea, we apply a time-varying driving force, given by a
modified version of the drag used earlier,

Fd
i ¼ �6pgai ui � a1 sin

2p
L
ðyi þ a2tÞ

� �
dx

� �
: (2)

This form [sketched in Fig. 3(a)] is chosen as the most simple way to
introduce time-dependence into the model beyond the initial transient.
It produces a sinusoidal form for u1 that translates in theþy direction
with constant velocity set by a2. The nature of the flow is then given by
a competition between the downstream flow driving determined by a1,
and the rate of change of the flow direction determined by a2.
Importantly, it is not sufficient to simply vary a1 in time with a2 ¼ 0.
The resulting “pulsed” flow would, under rate-independent conditions,
not lead to a change in the net path followed by particles (it would
only change the rate at which their path is followed) and so would not
change the bulk rheology in Figs. 1(g) and 1(h).

Shown in Figs. 3(b)–3(e) are steady state results for
a2=a1 ¼ ½0; 1�, where the horizontal axes in (b) and (c) are shifted so
that y=L ¼ 0 maps to Fd

i ¼ 0. In each case, we initialized the system
with a2 ¼ 0 so that / locally exceeded /m. Focusing on the volume
fraction profile /ðyÞ, Fig. 3(b), we see that increasing a2=a1 leads to a
homogenization of the system, i.e., /ðyÞ becoming spatially uniform.
This is associated with the shear rate profile more closely following the
imposed affine flow, Fig. 3(c). For a2=a1 ¼ 0:1, /ðyÞ becomes dis-
torted with the peaks being lowered and shifted. The phase shift in the
/ peaks is explainable in terms of a momentum balance per unit vol-
ume in y taken from a reference point moving at a2. For a2 ¼ 0,
one obtains steady states when the _c and / profiles are such that
@
@yRyy ¼ 0 (though the non-local constitutive relation governing this

balance is elusive). Here, the symmetry is such that positions in space
separated by y=L ¼ 0:25 are equivalent up to a factor61. For a2 6¼ 0,
@
@yRyy at each y position must balance the change in momentum asso-

ciated with a flux through that position with rate a2 but time-varying
/. This leads to / and _c becoming out of phase, Fig. 3(d), so that the
symmetry is broken and instead positions separated by y=L ¼ 0:5 are
equivalent. At a2=a1 ¼ 1, the system is completely homogeneous in
terms of the particle distribution in y.

This change in the arrangement of particles is reflected in the
measured rheology. Plotting the stress against strain rate, Fig. 3(e), we
see a progressive shift from the apparent yield stress behavior to a
more rate-dependent response when a2=a1 ¼ 1. In the latter case, the
two branches of the flow curve (in pink) show the stress increasing
with shear rate (both being approximately linear over a narrow range),
with the stress at all shear rates being lower than the simple shear one
obtained at the same global volume fraction (shown in light gray). The
rheology here is bivalued since the breaking of symmetry described
earlier leads to states of distinct / (separated by y=L ¼ 0:25), sharing
a common j _cj. Here, the rapidly changing driving flow acts similarly to
the vibrations described by Ref. 17 and the orthogonal shear described
by Ref. 19, that is, perturbing the instantaneous shear rate sufficiently

fast that a steady microstructure cannot be established. Thus, by
changing the flow field rapidly, we demonstrate and utilize the flow-
history dependence of the material, noting that the relevant competi-
tion of timescales does not involve an internal material relaxation time
(as would be the case in a thixotropic material) but rather the ratio of
the driving timescales represented by a. In the inhomogeneous flow
presented here, the comparatively rapid perturbation at large a has the
additional effect of homogenizing the volume fraction profile.
Recognizing that the response time to changes of flow direction
decreases with increasing proximity to jamming,31 it is likely that the
value of a needed to eliminate the apparent yield stress will increase
with the global volume fraction of the system, although this depen-
dence is likely to be complex and warrants further investigation.
Similarly, other factors that influence the position of the jamming
point of the system such as polydispersity27 and particle shape32 will
be important in governing the responsiveness of the material to
dynamic inhomogeneous driving.

VI. CONCLUDING REMARKS

We have shown that inhomogeneous flow in dense non-
Brownian suspensions drives particle migration, leading to a spatially
varying volume fraction that can locally exceed the simple shear fric-
tional jamming point /m by a significant amount. This effect can be
eliminated by imposing a time-varying flow, choosing the timescale
for the variation to be shorter than the characteristic time required for
the spatial / profile to establish. Importantly, achieving elimination of
the apparent yield stress does not require us to exceed any critical
stress (indeed, we can make our flow rates arbitrarily small by manipu-
lating the parameter a1, providing its ratio to a2 is set appropriately).
This illustrates important issues related to the flow physics of non-
Brownian hard sphere suspensions: while the steady state homoge-
neous rheology is becoming well-characterized and well-understood
(including links to rate-dependent phenomena such as shear thicken-
ing), inhomogeneous flow, and in particular, time-dependent inhomo-
geneous flows pose a major challenge to modeling and flow
prediction.22 This has direct consequences for industrial practice where
knowing the relevant scale of the parameter a might guide the design
of baffles or impellers in stirred tanks33 or milling processes (for which
particle-based simulation is increasingly providing mechanistic
insight34,35) and may have far-reaching implications for fields as
diverse as understanding translocation in biological systems.36
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